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Figure 1. Marching Squares Kernel Density Estimation (MSKDE) is a technique to quickly create high quality, attractive, hotspot maps. On the left, a
traditional crime hotspot map was created using KDE only. In the middle, contour lines, computed using Marching Squares, delineate a few predefined
crime density levels. On the right, the original Kernel Density Estimation surface was removed and a sequential segmented colormap was used to finish the
hotspot map. The hotspot map generated with MSKDE is less anomalous than the original KDE map and was generated much faster than traditional KDE
hotspot maps with a similar level of accuracy, which require smaller cell sizes.

Abstract—In recent years, violence has considerably increased
in the world. In a certain state of Brazil, for example, the
homicide rate grew from 16 homicides per 100,000 inhabitants
in 2000, to 48 homicides per 100,000 inhabitants in 2014. Police
departments worldwide use various types of crime maps, which
are generated with diverse techniques, in order to analyze and
fight crime. Those types of maps enable decision makers to
identify high-risk areas and to allocate resources more effectively.
Hotspot maps, in particular, are crime maps often available
in visual interactive systems for crime analysis. In order for
hotspot maps to be really useful, they need to be very accurate -
specially for resource allocation tasks - and to be processed very
fast for quick analysis of different scenarios. In this paper, we
propose MSKDE - Marching Squares Kernel Density Estimation,
a solution for generating fast and accurate hotspot maps. We
describe the technique and demonstrate its superior qualities
through a careful comparison with the standard Kernel Density
Estimation technique, which is widely used for generating hotspot
maps.
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I. INTRODUCTION

Crime has become a central problem in many countries in
the world. In Brazil, crime is a theme of growing interest. Vi-
olent crimes, in particular, have dramatically increased in some
parts of Brazil in recent decades [1], challenging governments
and the whole society [2].

Modern countries spend a lot of money to combat crime
every year. For instance, USA, France, Germany and Brazil

spend annually more than 1% of their GDP on public
safety [1]. In reality, the total cost of crime is much higher
than just the amount spent on public safety. In Brazil, for
example, the total cost associated with violent crimes in 2013,
including public safety, state prison maintenance and social
costs, amounted to 100 billion dollars, corresponding to 5.4%
of Brazil’s GDP [1].

In the case of crime prevention, resources must be deployed
at areas of higher crime likelihood, the so-called hotspot areas.
Predicting those places is a basic problem of criminology, the
scientific study of crime and criminals [3].

It is well known that crimes do not occur randomly and
do not spread uniformly through space. In fact, the offenders
usually search carefully the place and the time for their
actions. Certain conditions make crime more frequent in some
places than in others [4]–[8]. Therefore, the spatial distribution
of crime likelihood is one of the main features in crime
prediction.

Hotspot maps are widely recognized as effective tools used
by the police [9]. Braga [10] investigated the effectiveness of
that tool and attested that the police was able to achieve a
significant reduction on crime and disorder. Boba Santos [11]
states that the most important map for criminal analysis is the
hotspot map based on Kernel Density Estimation (KDE) [12].
KDE is a technique for nonparametric estimation of a probab-
ility density function and has the ability to expose aggregated



and sparse regions, a useful feature for crime analysis.
The inherent difficulties when dealing with complex crimes,

international terrorism, and increasingly sophisticated criminal
organizations pushed governments to develop computational
tools to deal with that special scenario. After the September
11 attack, visual interactive systems have gained prominence
and have been increasingly adopted for dealing with complex
and dynamic problems, such as criminal analysis.

In order to provide a high level of productivity and a good
user experience, visual interactive systems must produce quick
and high-quality responses to user inquiries [13]. Accuracy is
also important for visual interactive systems, since responses
that in one hand are quick but on the other hand are inaccurate
can lead to swift wrong decisions. In contrast, accurate but
slow systems are not capable of following the dynamics of
the environment, and can hinder decision making, causing the
response to arrive too late.

Unfortunately, speed and accuracy are not easily obtained
simultaneously in crime hotspot map generation. Particularly
using KDE, in order to produce a map at interactive speed,
the cell size of the domain’s discretization cannot be small,
which ends up in a pixelated and not accurate hotspot map.

In order to obtain a hotspot map quickly without losing
accuracy, we propose MSKDE (Marching Squares Kernel
Density Estimation), a fast technique to transform a low
resolution KDE hotspot map into a new hotspot map based
on contour lines (see Figure 1). The outcome of MSKDE is a
hotspot map with rounded and smooth boundaries, which can
be generated quickly, with an accuracy similar to KDE hotspot
maps made with smaller cell sizes. MSKDE maps, with their
smoother boundaries, are a more natural representation of the
real world’s hotspots than the tiled looking original KDE maps.
We will demonstrate in an experiment that MSKDE maps
preserve accuracy at lower computational cost when compared
with traditional KDE maps with similar levels of accuracy.

The remainder of this paper is organized as follows. In
Section II, we review related work. In Section III, we present
background knowledge about KDE and Marching Squares. In
Section IV, we describe MSKDE. In Section V, we detail an
experiment and a define a metric to compare MSKDE with
the traditional KDE. In Section VI, we present and analyze
the results of the experiment. Finally, in Section VII, we
present conclusions of our work, and outline directions for
future work.

II. RELATED WORK

Although the use of KDE for creating crime hotspot maps
has been extensively studied in the last decades, only the
aspects of the creation process and professional use were
investigated and very little attention has been paid to map
generation time, human perception and suitability for use in
visual interactive systems.

Williamson et al. [14] present a technique for creating a
crime map based on KDE where the bandwidth is determined
by the mean of the distance of each crime to its k-nearest
neighbors. The authors claim that their method is the first

nonarbitrary way of determining the bandwidth, but a crime
analyst still has to choose a suitable value for the parameter
k.

The inclusion of a temporal weight in the KDE kernel
function was investigated by Ratcliffe [15], Bowers et al.
[16] and Mohler [17], when the authors tried to create an
integrated framework with space and time dimensions. This
strategy seems to be promising for creating specialized hotspot
maps for regions with temporary crime density. Temporary and
chronic crime density are concepts developed in [18].

Also, the construction of the KDE crime hotspot map is
studied by Chainey et al. [19] from a statistical point of view,
by Hart and Zandbergen [20] focusing on the best parameter
values and best kernel function for the purpose of crime
prediction, and by Chainey et al. [21] with a focus on the
types of crime that can be better predicted. We believe that
only a few possibilities in terms of cell size and bandwidth
were tested because of their very laborious process and long
execution time. A more automated process would benefit from
our proposed solution, which enables testing a broader set of
parameter configurations in less execution time.

In the visual analysis area, Malik et al. [22] present VALET,
a visual interactive system for analysis of law enforcement
spatiotemporal data, through maps built using Kernel Density
Estimation. Newer versions of that system include improve-
ments like correlation analysis and the event time as a new
dimension [23], and a new multidimensional Gaussian kernel
based on the k-nearest events [24]. VALET is a comprehensive
system, but as far as we know, it does not include any
technique for building maps quickly, except when using a
large cell size. We also noticed that the kernel function used
in VALET does not generate smooth surfaces and the map
accuracy is not verified. Besides proposing a technique to build
a hotspot map quickly, we also propose a metric that evaluates
the accuracy of the generated map compared with a reference
map. This metric is described in Section V.

III. BACKGROUND

In this Section we describe the KDE technique and the
Marching Squares algorithm, as they are both needed to build
our solution.

A. Kernel Density Estimation

Kernel Density Estimation (KDE) is a technique for non-
parametric estimation of a Probability Density Function (PDF).
It was initially developed by Rosenblatt [12] for unidimen-
sional random variables. However, it can be extended to more
dimensions – in our case, we deal with two dimensions.

The idea behind KDE is that the random variable being
studied has an inherent PDF that can be statistically estimated,
based on sample data that is supposed to be generated by the
real density function itself [25], [26].

In the case of two dimensions, in which we have events
scattered on a region, KDE estimates the PDF by dividing the
area into a regular grid of cells, and calculating for each cell,
using a kernel function, a density value. The kernel function



calculates the density, summing contributions of all events
that are located within a certain distance (bandwidth) from
the cell center. The result is a two-dimensional scalar field
that estimates the PDF, and it is the basis for a hotspot map.
Figure 2 illustrates this process showing an example for a
single cell in a two-dimensional field.

Figure 2. How the density in one cell (in orange) is calculated using KDE: for
each event, represented by a point, inside the bandwidth circle, the algorithm
computes its distance to the cell center divided by the bandwidth and sends it
to the kernel function. Common kernel functions consider that nearer events
(e.g. B) contribute more to the cell density than distant events (e.g. A). Finally,
the density is computed as the sum of contributions of all events that are inside
the bandwidth.

From the explanation above, it follows that KDE has three
parameters that directly affect the resulting map: the cell size,
the bandwidth and the kernel function.

• Cell size impacts map resolution, which affects appear-
ance, accuracy and execution time. Small cells lead
to more accurate, smooth and good-looking maps that
are slow to compute. Large cells, in turn, lead to less
accurate, pixelated maps that are fast to compute;

• Bandwidth impacts the degree of aggregation and cluster
formation. Small bandwidths lead to spotty maps, because
the events will only contribute to nearby cells. On the
other hand, large bandwidths aggregate more points,
forming big clusters;

• Kernel function defines how the events will contribute
to each cell density. Common functions return a value
inversely proportional to the distance between the event
and the center of the cell, giving more weight to events
that are nearer the cell. The most used and recommended
kernel function is the quartic 1 [20], [27].

The KDE algorithm can be implemented in two ways, which
result in different computational complexities (n is the number
of cells, e is the total number of events, s is the cell size, b is
the bandwidth):

1) Based on cells: each cell is visited and its density is
calculated using all events that are within the bandwidth.
In this case, the complexity is O(n · e).

2) Based on events: each event is visited and all cells within
its bandwidth are updated with its calculated contribution.
In this case, the complexity is O(e · π · ceil2( bs )).

1f(u) = 15
16

(1− u2)2 for 0 ≤ u ≤ 1, and u is a normalized bandwidth.

Input: A 2D scalar field with h rows and w columns, a
contour value v.

Output: A set of edges E.
1: Load the lookup table L with the 16 possible cases of how

the value v can be related to the vertices of a cell (as in
Figure 4)

2: for i = 1 to h− 1 do
3: for j = 1 to w − 1 do
4: Define a logical cell c and define c.values with the

field values of vertices (i, j),(i+ 1, j),(i, j + 1) and
(i+ 1, j + 1)

5: index ← build_index(c.values, v)
6: case ← lookup(L, index)
7: if case == 5 or case == 10 then {Ambiguous cases}
8: if average(c.values) < v then
9: Contour follows along lowest vertices (solid

lines in cases 5 and 10 in Figure 4)
10: else
11: Contour follows along highest vertices (dotted

lines in cases 5 and 10 in Figure 4)
12: end if
13: end if
14: Build cell geometry for the case (edges and vertices)
15: Linearly interpolate the edge vertices along c.values
16: Store the interpolated edges in the set E
17: end for
18: end for
19: return E

Figure 3. Marching Squares Algorithm

To optimize our implementation, we compare n with
π · ceil2( b

cs ) and choose the way that produces the fastest
computation.

B. Marching Squares

Marching Squares is a very efficient algorithm for gen-
erating contour lines in a regular grid representing a two-
dimensional scalar field. It is the 2D version of the 3D
marching cubes algorithm [28]. As its name implies, it works
by marching the cells in the field, processing each one of
them independently. The values of the scalar field on the cell’s
vertices (corners) are analyzed and the geometry of the cell is
computed based on a pre-built lookup table (see Figure 4). The
final position of the contour is obtained by linear interpolation
along the cell’s vertices. Notice in Figure 4 that cases 5 and
10 are ambiguous cases. For simplicity, the disambiguation
in our implementation was obtained by averaging the values
on the corners: if the average is greater than or equal to the
contour value, the contour will pass between the two highest
vertices (dotted lines), otherwise the contour will pass along
the lowest vertices (solid lines). Other possible solutions for
disambiguation are described in [29], [30]. The Marching
Squares algorithm is detailed in Figure 3.

Figure 5 displays a small example of Marching Squares
being calculated. Note that the interpolation phase (on the



Figure 4. Marching Squares’ 16 cases: Based on the cell’s four vertex values,
the contour can assume one of the 16 shown possibilities (0 to 15). Filled
vertex dots mean that their values are greater than or equal to the contour
value. Non-filled dots mean the opposite. In two cases (0 and 15), the contour
line does not pass through the cell because the contour value is above or below
all four vertex values. Special cases 5 and 10 are saddle points and hence,
ambiguous. The disambiguation is solved using the average of the cell’s four
vertex values; if the average is greater than or equal to the contour value, the
contour will cross the cell in each side of the ridge formed by connecting the
two highest vertices (dotted lines), otherwise the contour will cross the cell in
each side of the valley formed by connecting the lowest vertices (solid lines).

right) is separated from the cases’ classification (in the middle)
only for illustration purposes; in fact, they occur at the same
time, to avoid other loop over the field.

Figure 5. Marching Squares algorithm in action: on the left, a field where
marching squares will be used to generate an isocontour representing value
v = 5. In the middle, the result after "marching¨ all cells, each cell assumes
one of the 16 cases in Figure 4 without any interpolation. On the right, the
result of the interpolation phase, where the contour vertices are adjusted to
cell vertex values.

IV. OUR APPROACH: MARCHING SQUARES KERNEL
DENSITY ESTIMATION

Marching Squares Kernel Density Estimation (MSKDE) is
a novel technique, presented in this paper, to generate high
quality crime hotspot maps, based on a pre-built KDE hotspot
map.

The basic idea behind MSKDE is that, as a crime hotspot
map generated by KDE is a 2D field, we can apply Marching
Squares to generate contour lines that are boundaries of heat
levels, forming a new hotspot map.

A MSKDE hotspot map is generated according to the
following steps:

Step 1 Select the spatial events for which we want to generate
the hotspot map (Figure 6a);

Step 2 Select the KDE parameters: cell size, bandwidth, and
kernel function;

Step 3 Generate the KDE hotspot map (Figure 6b);
Step 4 Select one or more contour values;
Step 5 For each selected contour value, apply the Marching

Squares algorithm described in Figure 3 to the KDE
map (Figure 6c);

Step 6 Apply a colormap to the regions defined by the con-
tours (Figure 6d).

If the analysts do not want to select the contour values
manually, they can use existing techniques for automatic
selection. A usual choice is to equally divide the range of
values of the field into a few segments and select the border
values as contour values. Another option is to apply a one-
dimensional clustering algorithm to the field values, forgetting
the spatial components, partitioning them into groups, and
again taking the border values as contours. In the example
shown in Figure 6, the contour values were determined by
one-dimensional k-means algorithm. Notice that a clustering
algorithm is a good alternative to select contour values, be-
cause the border values will work as natural breaks. However,
depending on the purpose of the map, percentiles could also
be a good choice.

So far, when comparing the final result of MSKDE in
Figure 6d with KDE in Figure 6b, it may seem that the only
advantage of MSKDE is to draw smooth maps, but there are
other advantages. In fact, the use of MSKDE in crime hotspot
map generation is encouraged by three main aspects:

1) Research in crime hotspot map indicates interest in ana-
lysis of definite ranges of crime density (like the highest
5% or 10% of the field). That makes sense because crime
hotpot maps are mainly used in predictive policing and
resource allocation, where definite boundaries are easier
to work with. MSKDE fulfills this requirement because
the contour boundaries are definite delimiters of density
levels.

2) Sometimes the pixelated appearance of KDE maps can
lead to incorrect classifications of regions near boundar-
ies. That could be solved by using a smaller cell size, but
at the expense of increasing the execution time. MSKDE
is better in that regard because the interpolation used
to build the contours generates more realistic regions
without a significant increase in execution time.

3) The round and smooth MSKDE delimiters bring a signi-
ficant gain in accuracy. This accuracy can be converted
to a gain in time, by applying MSKDE to low resolution
KDE maps, speeding up the map generation and making
possible to use better hotspot maps in interactive systems.

V. EXPERIMENT AND EVALUATION

In this section, we compare MSKDE with KDE in a typical
task of the police department of a large city: generating a
hotspot map to guide resource allocation and to define police
patrol routes. The considered hotspot region is the highest 5%



Figure 6. Overview of Marching Square Kernel Density Estimation: in (a) a set of spatial events is selected for the hotspot map. In (b) the KDE hotspot
map is generated from the event set. In (c) we see a set of contour lines (in blue) generated after running Marching Squares. In (d) we see the final MSKDE
map, after applying an appropriate colormap to regions defined by the contours.

of the field and the maps are compared with respect to two
aspects: generation time and accuracy.

Our experiment consists in creating a set of MSKDE and
KDE maps of the same region and events, in which we fixed
the values of the bandwidth and of the kernel function and
varied the cell size within a certain range to measure its effect
on the execution time and on the appearance of the map.

For accuracy evaluation purposes, we compare the maps
generated by both techniques with a reference hotspot map.
This reference map represents the real crime probability dens-
ity of the region. The ideal reference map would be a KDE
map using a cell with infinitesimal size. However, since that
is not practical, we use a KDE hotspot map with a very small
cell size as reference map; in our case, 10 meters. All the
data, parameter configuration and computer environment used
are described below.

A. Data and parameters for the experiment

Our experiment was conducted with the following data and
parameters:

• Spatial events: 2,916 homicide crimes occurred in a two-
year period (2014 and 2015) in a large city in Brazil;

• KDE parameters:
– Cell sizes: a range of 50 to 200 meters, with incre-

ments of 10 meters. This wide range enables more
detailed comparisons between the techniques.

– Bandwidth: 1000 meters. That value was chosen
because, for applications such as resource allocation,
a spotty small bandwidth map renders the decision-
making process more difficult due to the excess of
possibilities. Larger bandwidth values, such as 1000
meters, generate more continuous clusters, which is
more appropriate to strategic tasks [31].

– Kernel function: a quartic kernel function, following
the trend of most studies in the field.

• Considered hotspot: the highest 5% of the field.
• Reference map for accuracy: a KDE hotspot map, gen-

erated from the same data, with the same bandwidth and
kernel function, but with a cell size of 10 meters.2

2The generation of the KDE map for 2916 events and a 10-meter cell size
took 28 minutes.

B. Computational Resources:

The computer and software used to run the experiments
were:

• Computer: X64 compatible PC;
• Processor: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz,

4 Cores;
• Memory: 16 GB of RAM;
• Operational System: Microsoft Windows 10 Pro X64;
• Software: Mathworks’ Matlab v. 2015b.

C. Experiment

Our experiment consists of the following steps:
Step 1 Generate the KDE hotspot map with cell size of 10

meters, that is used as a reference in accuracy analysis.
Step 2 Classify the highest 5% cells of the KDE as hot and

the remaining 95% as non-hot.
Step 3 Generate a MSKDE map and a KDE map for each cell

size, in the range of 50 to 200 meters, with a 10-meter
increment step, making a total of 32 maps.

Step 4 For each cell of the standard KDE reference map:
• get the coordinates of point located at the cell’s

center;
• find out whether the cell is classified as hot or

non-hot;
• for each of the 32 generated maps:

– increment a counter whenever the classificaiton
of the cell in which that point falls is different
from the classification of its cell in the standard
KDE reference map.

After that experiment, we have, for each map, its generation
time and the number of cells of the reference map that did
not receive the same classificaiton in it. Those misclassified
cells indicate the degree of malformation of the hotspot in a
generated map. The hot cells that are misclassified as non-
hot represent regions that will not be covered in the resource
allocation, with, possibly, serious consequences. On the other
hand, the non-hot cells that are misclassified as hot represent
regions to which resources will be allocated unduly, indicating
a waste of resources.

The map accuracy will be evaluated, indirectly, by evalu-
ating the degree of anomaly of the map with respect to the



reference map. High anomaly indicates low accuracy, and vice
versa.

To evaluate the anomaly between hotspot maps, we present
the Hotspot Anomaly Index (HAI), an index that indicates how
a hotspot map is anomalous with respect to a reference hotspot
map. HAI is defined as 100 times the ratio of the number of
cells in the reference map that are misclassified in a given map
to the total number of cells classified as hot in the reference
map. Note that we cannot evaluate a hotspot map only by
its coverage of the hot cells of the reference map, because
it would be easy to obtain a "100% accurate" map by just
enlarging the hot area of the map under evaluation to cover
its whole area. However, a hotspot map whose hot area covers
the whole map is not really a hotspot map. For this reason, a
hotspot map evaluation index must be with respect to the size
of the hot area in the reference map.

The HAI formula is defined as

HAI =
m

n
· 100, (1)

where m is the number of cells in the reference map that
are misclassified in the map being evaluated (considering the
cell center), and n is the number of cells classified as hot in
the reference map. The HAI index quantifies the anomaly of a
hotspot as a percentage of the hot area in the reference map.

Figure 7 displays an example of HAI calculation.

ba

Figure 7. Hotspot Anomaly Index (HAI) calculation example: In a, we
have a 68x56 reference hotspot map (3,808 cells) whose hot area, colored
in blue, consists of 1,484 cells. In b, we have a 17x14 KDE hotspot map
whose hot area consists of 94 cells. The HAI index of b with respect to a
is calculated by counting how many of the 3,808 cells in a (e.g. the orange
cell in a whose center is also marked as an orange spot in b pointed by
the arrow) are classified differently in the map shown in b, dividing that
count by the number of hot cells in the reference map in a, and multiplying
that ratio by 100. In this example, 121 cells of a were misclassified in b,
therefore, HAI = 121

1484
· 100 ≈ 8.15%, which indicates that the hotspot

map in b has an anomaly, corresponding, in size, to approximately 8.15% of
the hot area of the reference map. Notice that for HAI calculation, the only
information needed from map b is how this map classifies every cell of map
a; the remaining information is taken from map a.

VI. RESULTS AND DISCUSSION

The hotspot map used as reference was generated and it has
2802 rows and 2422 columns; with a total of 6,786,444 cells.

The highest 5% values (338,423 cells), were classified as the
hot part of the map.

All 16 KDE maps and 16 MSKDE maps were generated,
with execution times presented in Table I.

Table I
EXECUTION TIME: TIMINGS ARE EXPRESSED IN SECONDS.

Cell Size KDE MSKDE
50 31.68 32.39
60 18.37 18.76
70 14.05 14.34
80 10.47 10.70
90 9.01 9.18

100 6.94 7.09
110 5.74 5.86
120 5.04 5.17
130 3.93 4.02
140 3.68 3.76
150 3.03 3.10
160 2.71 2.76
170 2.20 2.25
180 2.13 2.17
190 1.98 2.02
200 1.92 1.97

Figure 8 displays a chart with the execution time for each
cell size and each map type.
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Figure 8. This chart shows the relation between execution time and cell size,
for each kind of hotspot map.

Following the maps generation, the HAI indices for all 32
maps were calculated (see Table II).

Figure 9 displays a plot of the anomaly of the maps, for
each analyzed cell size.

A. Discussion

1) Performance: On Table I, we report the execution times
of MSKDE and KDE, for a range of cell sizes. We observe
that, in average, the execution time of MSKDE is only 2.18%
higher than that of KDE. This increase is not significant for
most applications and is hardly noticeable in Figure 8.

The execution time, in both kinds of maps, has exponential
decay as the cell size increases, and the time cost, when the
cell size is small, is so high that its use in interactive systems
is not recommended. For use in interactive systems, the cell
size should have a minimum size that does not compromise
the user’s experience.



Table II
HOTSPOT ANOMALY INDEX: EXPRESSED IN PERCENTAGE OF THE HOT

REGION IN THE REFERENCE HOTSPOT MAP.

Cell Size KDE MSKDE
50 3.32% 0.67%
60 4.04% 0.88%
70 4.84% 1.18%
80 5.56% 1.75%
90 6.43% 2.34%

100 7.15% 2.22%
110 7.87% 2.86%
120 8.49% 2.47%
130 9.36% 4.16%
140 10.70% 4.92%
150 11.08% 5.66%
160 11.99% 6.58%
170 13.01% 6.13%
180 13.59% 6.37%
190 14.76% 7.82%
200 15.81% 9.06%

 0%

 2%

 4%

 6%

 8%

10%

12%

14%

16%

 40  60  80  100  120  140  160  180  200

H
o
ts

p
o
t 

A
n
o
m

a
ly

 I
n
d
e
x
 (

H
A
I)

Cell Size (in meters)

Anomaly x Cell Size for KDE and MSKDE hotspot maps

KDE

MSKDE

Figure 9. This chart shows the relation between the anomaly of the maps
and their cell size, for each kind of hotspot map.

2) Accuracy: As observed in Table II and in Figure 9,
for every cell size, MSKDE generates less anomalous (more
accurate) maps than KDE.

Analyzing the chart in Figure 9, we can see that, for KDE
and MSKDE maps with similar HAI, the cell size on MSKDE
maps is significantly bigger than the cell size on KDE maps.
This is very advantageous for MSKDE because maps with
bigger cell sizes can be generated in less time (Table I and
Figure 8).

For example, comparing a KDE map with cell size of 70
meters and a MSKDE map with cell size of 140 meters,
both maps have similar HAI (4.84% and 4.92% respectively).
However, while the KDE map is generated in 14.05 seconds,
the MSKDE map is generated in only 3.76 seconds.

We compare the relationship between HAI and execution
time for KDE and MSKDE in Figure 10. Notice that MSKDE
outperforms KDE in every combination, whether providing a
better execution time for similar anomaly or giving a more
accurate map at the same execution time.

3) Limitations: In this work we have compared MSKDE
and KDE in generating hotspots map with 5% of hot area and
a bandwidth of 1000 meters. In our experiment, the MSKDE
map with cell size of 50 meters is composed by 16 polygons,

Table III
RESULTS: CONSTRUCTION TIME (IN SECONDS) AND NUMBER OF POINT

MISCLASSIFICATIONS (PM) FOR KDE AND MSKDE HOTSPOT MAPS.

KDE MSKDE
Cell Size Time HAI Cell Size Time HAI

50 31.68 3.32% 120 5.17 2.47%
60 18.37 4.04% 130 4.02 4.16%
70 14.05 4.84% 140 3.76 4.92%
80 10.47 5.56% 150 3.10 5.66%
90 9.01 6.43% 160 2.76 6.58%

100 6.94 7.15% 170 2.25 6.13%
110 5.74 7.87% 180 2.17 6.37%
120 5.04 8.49% 190 2.02 7.82%
130 3.93 9.36% 200 1.97 9.06%
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Figure 10. This figure shows the relationship between the Hotspot Anomaly
Index (HAI) and the execution time for KDE and MSKDE maps. Notice that
MSKDE outperforms KDE in every scenario, offering less anomaly at a fixed
time and being faster for a fixed anomaly.

with a total of 2,362 edges.
Bandwidth is a parameter that has a major influence on the

number of polygons, because as we saw in Section III-A, small
bandwidths generate spotty maps, formed with more polygons.
For example, if our experiment were done with a bandwidth of
400 meters, the MSKDE map would have been composed by
76 polygons, with a total of 4,502 edges. This larger number
of polygons and edges can increase the execution time and
delay operations such as coloring and rendering.

Other point that deserves attention is the additional cost
incurred when it is necessary to plot a MSKDE map with
more than one contour level. For example, in a case as shown
in Figure 1 on the right, which has 9 contour levels, the part
of the MSKDE process, responsible for calculating polygons,
must run 9 times and the final map will have a lot of polygons
and edges. This extra steps will add some cost to the final
execution time.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced Marching Squares Kernel Dens-
ity Estimation (MSKDE), a technique that quickly transforms
low resolution KDE hotspot maps into a more attractive
and accurate hotspot map. We demonstrated that MSKDE
outperforms KDE not only by offering a less anomalous map
in the same execution time, but also by generating a map
with a predefined anomaly faster. Furthermore, we present the



Hotspot Anomaly Index (HAI), an index to evaluate the degree
of anomaly between a hotsport map and a reference hotspot
map.

Future works include the study of varying MSKDE para-
meters in order to prepare hotspot maps designed to predictive
activities and incorporate the time event as a new dimension,
forming an integrated spatiotemporal framework for hotspot
map generation.
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