
Dazed and Confused: Studying the Prevalence of
Atoms of Confusion in Long-Lived Java Libraries

Wendell Mendes, Oton Pinheiro, Emanuele Santos, Lincoln Rocha and Windson Viana
Department of Computing, Federal University of Ceará, Fortaleza, Ceará, Brazil

wendell.mendes@sti.ufc.br, otonpneto@alu.ufc.br, emanuele@dc.ufc.br, lincoln@dc.ufc.br, windson@virtual.ufc.br

Abstract—Program comprehension is a fundamental activity in
software maintenance and evolution, impacting several tasks such
as bug fixing, code reuse, and implementation of new features.
The Atom of Confusion (AC) is considered the smallest piece
of code that can confuse programmers, difficulting the correct
understanding of the source code under consideration. Previous
studies have shown that these atoms can significantly impact
the presence of bugs in C++ projects and increase the time and
effort to code understanding in C++ and Java programs. To
gather more evidence about the diffusion of ACs in the Java
ecosystem, we conduct a study to analyze the prevalence, co-
occurrences (at the class level), and evolution of ACs in 27 long-
lived Java libraries. To support our investigation, we developed
an ACs automatic search tool, which found 11.404 occurrences
in the studied libraries. The Conditional Operator and Logic as
Control Flow ACs were the most prevalent among the 10 types of
ACs assessed. Our findings show that Conditional Operator and
Logic as Control Flow were more likely to co-occur in the same
class. Finally, we observed that the prevalence of ACs did not
decrease over time. On the contrary, in 13 libraries, the presence
grew proportionally more than the size of the library in lines of
code. Furthermore, in 15 libraries, the fraction of Java classes
containing at least one AC also increases over time.

Index Terms—Empirical Study, Program Comprehension,
Atoms of Confusion, Long-lived Java Projects

I. INTRODUCTION

Code comprehension is the activity in which software
engineers seek to understand a computer program having its
source code as the main reference [2]. Understanding source
code is critical in software development, both in creating new
features and in maintaining existing ones. Increasing knowl-
edge about the code helps software engineers to better perform
maintenance activities such as fixing bugs, code refactoring,
code reusing, and even documentation writing [23].

In software development, developers frequently deal with
code snippets that were not initially written by themselves.
The developers’ cognitive process involves identifying, un-
derstanding, and analyzing code written by other developers.
It is not rare the cases in which, for a particular code
snippet, the human understanding diverges from the machine’s
interpretation, leading to an erroneous conclusion about the
code snippet’s outcome in a future execution [9].

Previous studies showed that code comprehension is the
most dominant activity in the development process, consuming
about 58% of the total time spent [19, 25]. Rahman in [22]
observed that when programmers are involved in high compre-
hension effort, they navigate and make edits at a significantly
slower rate. Ebert et al. in [7] observed that code reviewers

often do not understand the change being reviewed or its
context [7]. In this circumstance, confusing code impacts code
comprehension and, hence, the development process. Devel-
opers tend to understand certain code structures more quickly
than other ones (more challenging), e.g., for loops take
more time to be understood than sequences of if [1]. Some
programming practices also affect the code readability [6].

Gopstein et al. in [9] identified patterns in code that are re-
sponsible for creating confusion in developers. These patterns
have been called Atoms of Confusion (ACs). The authors
conducted two surveys to assess the impact of these confusing
patterns. First, code snippets written in the C language were
analyzed, with and without the presence of ACs, comparing
the correctness of their execution results. The researchers con-
cluded that codes containing ACs make understanding more
complex when compared to codes with equivalent functions
that do not include these atoms. This seminal work showed
that the presence of these patterns could significantly impact
correctness and the time and effort for program understanding.
Despite the importance shown by Gopstein et al., AC studies
are still few. The impact caused by ACs in other programming
languages, such as Java, and how this phenomenon is diffused
on long-lived software systems calls for further investigation.

Inspired by the study of Langhout and Aniche [15], we
examined the prevalence of ACs in the Java ecosystem.
Firstly, we developed a tool for searching ACs in Java source
code on top of Spoon1, a Java source code analysis and
transformation tool. Next, we investigated the (1) prevalence,
(2) co-occurrence, and (3) evolution of ACs in 27 well-known
and widely adopted long-lived Java libraries from open-source
ecosystems (21 libraries from Apache Software Foundation
plus Gson, Hamcrest, Jsoup, JUnit, Mockito, and X-Stream).

We detected the prevalence of 11, 404 ACs in 449, 885 lines
of code analyzed. Our tool found 9 types of ACs in these long-
lived Java libraries. Apache libraries like Math and Compress
had nine types of ACs, while Gson library had seven types.
We detected the Logic as Control Flow and the Conditional
Operator atoms in all studied libraries. On the other hand, the
Arithmetic as Logic and Repurposed Variables ACs appeared
only in 3 of them, and we did not find the Omitted Curly
Braces in any library. Our findings shows that Conditional
Operator and Logic as Control Flow ACs are more likely to
co-occur in the same class. The evolution analysis showed the

1https://spoon.gforge.inria.fr/

https://spoon.gforge.inria.fr/

presence of ACs occurred since the first version of analyzed
projects. The absolute number of ACs has increased in all
studied projects except for JUnit. Thus, we were able to
observe that the number of ACs grows proportionately (or
more highly) than the size of the libraries in lines of code.

The remainder of this work is organized as follows. Sec-
tion II discuss the related work. The methodology adopted in
this study is described in Section III. In Section IV we present
the tool we built to support our study. Next, in Section V,
we describe the study results and, in Section VI, we present
further results discussion. Section VII describes the threats to
the validity of our study. Finally, Section VIII presents the
final considerations and proposals for further investigation.

II. RELATED WORK

Gopstein et al. [9] introduced the concept of Atom of
Confusion (AC), in which an AC can be defined as the
smallest piece of code capable of causing confusion in de-
velopers, causing erroneous conclusions about their behavior.
The hypothesis is that the existence of these atoms affects the
source code understanding and may lead developers to make
mistakes in maintenance tasks, introducing bugs in the system.

To assist researchers interested in the study of atoms of
confusion, Castor [3] defined an AC as a code pattern that is:
(i) precisely identified; (ii) likely to confuse; (iii) replaceable
by a functionally equivalent code pattern that is less likely to
confuse; and (iv) indivisible.

In [9], Gopstein et al. pointed out 15 ACs that cause signifi-
cant confusion when present in source code. In complementary
work, Gopstein et al. [10] observed a strong relationship
between lines of code containing ACs and the occurrence of
bugs, showing that bug-fix commits removed more ACs when
compared to other commit types. Similarly, they observed that
the lines containing ACs caused more confusion, as these
pieces of code tended to be more commented than others.

In a more recent work, Gopstein et al. [11] conducted a
qualitative study that noted that quantitative studies may be
underestimating the amount of misunderstanding that occurs
during the studies assessments, since correct answers on
assessment tasks do not guarantee that there was no confusion
in the process of understanding source code.

de Oliveira et al. [5] evaluated code interpretations with
and without ACs using an eye tracker. From an aggregate
perspective, a 43.02% increase in time and a 36.8% increase
in gaze transitions were observed in code snippets with ACs.
The authors also observed that the regions that received the
most eye attention were the regions containing ACs.

Based on the study of Gopstein et al. [9], Langhout and
Aniche [15] defined atoms of confusion in the context of
the Java programming language. This study analyzed and
translated the 19 ACs of confusion defined by Gopstein et al.,
resulting in a list of 14 reproducible ACs in Java. They
also evaluated the perceptions and impacts of ACs on novice
developers. The results showed developers are 4.6 to 56 times
more likely to make misunderstandings in 7 of the 14 ACs
studied. Furthermore, when the authors confronted the study

participants with two versions of code, with and without atoms
of confusion, they reported that the version containing ACs
is more confusing and less readable in 10 of the 14 ACs
investigated. Thus, the study shows that these ACs can confuse
novice developers [15]. Table I presents the list of the ten ACs
based on that work, their respective Java translations, and the
code with the confusion removed.

Following the study of Langhout and Aniche [15] in the
context of Java ecosystem, our research proposes investigating
the incidence of ACs using an automated search tool. With
the development and validation of this tool, we could more
quickly observe the prevalence, the co-occurrence, and the
ACs evolution in Java projects. Our findings and implications
are discussed in the following sections.

III. METHODOLOGY

A. Study Design

Repositories
Download

Projects List

Evolution
Report

Atoms of Confusion
Occurrences Result

Prevalence and Co-
occurences Report

Run Atoms Search
Tool

Prevalence and Co-
occurences Report

Creation

Projects Selection
for Evolution

Analysis

Download Projects
Releases

Evolution Reports
Creation

Fig. 1. Prevalence and Evolution study workflow

Our study investigates the prevalence of Atoms of Confu-
sion in open-source long-lived Java libraries. The goal is to
quantify to what extent ACs are prevalent in Java libraries
and make this information available to researchers and prac-
titioners as the first step for further investigation concerning
causality issues and how to properly address this phenomenon.

Figure 1 shows our study’s main phases. First, we selected
27 long-lived Java libraries (see Section III-C) to serve as
subjects in our empirical evaluation. We also investigated in
those projects the co-occurrence of ACs. Finally, we selected
24 projects to investigate the evolution of the prevalence of
ACs over time. We did not consider three projects since they
did not have a sufficient number of versions for analysis.

B. Research Questions

The research questions we investigated in the study were:

RQ1. What is the prevalence of atoms of confusion in long-
lived Java libraries?

The purpose is to provide a first insight into the prevalence
of ACs. We checked their occurrences in the 27 selected

TABLE I
ATOMS OF CONFUSION IN JAVA ADAPTED FROM [15]

Atom of Confusion Name Acronym Snippet with Atom of Confusion Snippet without Atom of Confusion
Infix Operator Precedence IOP i n t a = 2 + 4 * 2 ; i n t a = 2 + (4 * 2) ;

Post-Increment/Decrement Post-Inc/Dec a = b ++; a = b ;
b += 1 ;

Pre-Increment/Decrement Pre-Inc/Dec a = ++b ; b += 1 ;
a = b ;

Conditional Operator CO b = a == 3 ? 2 : 1 ; i f (a == 3){b = 2;}
e l s e {b = 1;}

Arithmetic as Logic AaL (a − 3) * (b − 4) != 0 a != 3 && b != 4

Logic as Control Flow LaCF a == ++a > 0 | | ++b > 0 i f (! (a + 1 > 0)) {b += 1;}
a += 1

Change of Literal Encoding CoLE a = 013 ; a = I n t e g e r . p a r s e I n t (” 13 ” , 8) ;
Omitted Curly Braces OCB i f (a) f1 () ; f2 () ; i f (a){ f1 () ; } f2 () ;
Type Conversion TC a = (i n t) 1 . 9 9 f ; a = (i n t) Math . f l o o r (1 . 9 9 f) ;

Repurposed Variables RV

i n t a [] = new i n t [5] ;
a [4] = 3 ;
w h i l e (a [4] > 0) {

a [3 − v1 [4]] = a [4] ;
a [4] = v1 [4] − 1;}

System . o u t . p r i n t l n (a [1]) ;

i n t a [] = new i n t [5] ;
i n t b = 5 ;
w h i l e (b > 0) {

a [3 − a [4]] = a [4] ;
b = b − 1;}

System . o u t . p r i n t l n (a [1]) ;

libraries. The study measured for each library the amount of
ACs present and the occurrence of distinct ACs’ types.

RQ2. To what extent do different types of atoms of confusion
co-occur, at the class file level, in long-lived Java libraries?

Besides measuring the prevalence of atoms of confusion,
we computed the co-occurrence of ACs in the same Java file
(a class). The goal is to observe tendencies for certain types
of ACs to occur together in a Java class. ACs co-occurrence
may indicate similarities in ACs code snippets structures, but
also if classes with ACs co-occurrences are changed by more
than one developer, or, even if the role implemented by a class
contributes to the presence of ACs (e.g., a class implementing
mathematical operations is more likely to have ACs).

RQ3. How long do Atoms of Confusion survive in long-lived
Java libraries?

We studied the evolution of the occurrences of the Atoms
of Confusion in 24 libraries from the set of 27 selected. The
goal is to evaluate how long ACs survive during the life span
of a library. We observed the prevalence of ACs over time
in these libraries. The analysis was made over a total of 455
versions of all 24 libraries studied.

C. Selection of Long-lived Java Libraries

We performed our analysis using the same set of long-
lived Java libraries used in the study of Lima et al. [16].
This set comprises 27 libraries, 21 libraries from the Apache
Commons2 ecosystem and six well-known libraries from other
ecosystems. In addition, these projects present an automati-
cally executable test suite and Maven (or Gradle) as their build
system, which helps us correctly handle them with Spoon [20].

These 27 libraries are used on thousands of systems and
are long-lived Java projects over ten years old. Despite this,

2https://commons.apache.org/

most have had recent releases within the last two years. These
libraries are, therefore, projects that are constantly updated.
Consequently, we believe that investigating the presence of
AoC in these projects is a good indication of how this
phenomenon occurs and evolves in Java projects. Table IV
summarizes the selected libraries for this study.

IV. THE ACS SEARCH TOOL

To answer our research questions, we developed a tool to
automatically search ACs in programs written in Java. The
tool used in this work aims to check for the presence of ACs
in Java classes and provides information about them. This
software was developed using Spoon, an open-source library
to analyze, rewrite, transform and transpile Java source code
[20]. The developed tool analyzes the .java files in source
code from software repositories. The information found can
be exported in a report as a CSV file. This CSV file shows
the code snippets that contain ACs, their types, class names,
and the lines in which they were found.

Currently, the tool is able to detect 10 of the 13 types of ACs
presented by Langhout and Aniche [15]: Infix Operator Prece-
dence, Post-Increment/Decrement, Pre-Increment/Decrement,
Conditional Operator, Arithmetic as Logic, Logic as Control
Flow, Change of Literal Encoding, Omitted Curly Braces,
Type Conversion and Repurposed Variables. The detection of
Repurposed Variables ACs is partially covered. This atom
consists of “misusing” of an existing variable for another
purpose. In this sense, automatically detecting the use of a
variable for another purpose is not trivial due its “semantic”
evaluation. Hence, our tool covers only two of the three cases
of this atom as described by Langhout [14]. All rules defined
for each AC covered by the tool are presented in detail on the
tool’s source code repository available in the following link:
https://anonymous.4open.science/r/bohr-aoc-api-3E3D/.

Langhout [14] argues that are some kind of ACs that can be
more easily avoided, such as Remove Indentation, Indentation,

https://commons.apache.org/
https://anonymous.4open.science/r/bohr-aoc-api-3E3D/

and Dead, Unreachable, Repeated. For example, developers
can avoid the Remove Indentation and Indentation ACs by
using automatic code formatters present in most code editors.
Dead, Unreachable, Repeated atom is detectable by static code
tools (linters) available as a plugin for most IDEs, which
inform the presence of this AC through warning messages.
Therefore, we decided not to include the detection of these
three ACs in this version of our search tool.

A. Search Tool Dataset

To minimize bias in the automatic identification of ACs, we
also manually built a double-checked gold standard dataset to
assess the precision and recall of our tool. Figure 2 shows the
workflow of this evaluation. The dataset creation was divided
in two steps: projects selection and manual inspection.

Projects Selection Repositories
Download

Double Manual
Atoms of Confusion

Verification

Tool Precision and
Recall Validation

Tool Tuning

Criteria Dataset
Precision and Recall

Results

Fig. 2. Precision and Recall study workflow

To create the dataset, we selected four open-source Java
projects that met the following criteria: (i) projects having
more than 50% Java source code; (ii) having up to twenty
thousand lines of code (LoC), excluding tests; (iii) possessing
at least one thousand stars on GitHub, (iv) having commits
and releases in 2021; and (v) containing at least five different
types of ACs. We applied criterion (ii) to make it more feasible
to check the occurrences of ACs manually and compare them
with those ACs detected by our search tool. In this sense,
observing the classification of Pinto et al. [21], we choose
small projects (i.e., LoC ≤ 20,000). To check criterion (v),
we ran the search tool on several candidate projects that met
the previous four criteria and checked their accuracy.

Four projects satisfied the inclusion criteria: FastUtil3,
Moshi4, Jimfs5, and uCrop6. As none of these projects con-
tained the Repurposed Variables and Arithmetic as Logic ACs,
we created a sample project, by extracting Java files containing
those two ACs from the Guava (version 31.0.1) and Redisson
(version 3.6.16) projects. Table II presents the selected projects
and their respective versions used in the evaluation.

We manually checked all Java files in these projects’ main
source code package, excluding the test files, to search for

3https://github.com/vigna/fastutil
4https://github.com/square/moshi
5https://github.com/google/jimfs
6https://github.com/Yalantis/uCrop

TABLE II
PROJECTS USED IN THE PRECISION AND RECALL EVALUATION

FastUtil Moshi Jimfs uCrop Sample
Version 8.5.6 1.12.0 1.2 2.2.7 -
LoC 1,622 5,783 7,823 4,309 850
#Classes 42 30 59 32 5
#Classes with AC 13 15 30 17 5
#AC 86 151 118 111 23
#AC Types 7 6 7 5 6

atoms of confusion. Two master students performed this ver-
ification independently. In this process, perspective alignment
meetings were held at the end of the verification of each
project to ensure both students had the same understanding
concerning the occurrence of ACs. The final result was a
dataset of ACs occurrences, containing the code snippet of
each AC, its types, the class name in which it was found, and
its location (the number of the start and end lines of code).
TableIII shows the numbers of ACs and their types we found.

B. Precision and Recall Evaluation

We ran the search tool on the selected projects and com-
pared its results with manually annotated information in the
dataset to verify its precision and recall. In the first iterations,
we did not identify precision problems. All the ACs the tool
detected were also tagged manually. Therefore, there was no
identification error. However, some issues with the tool recall
appeared. For example, the tool did not was able to identify
all occurrences of the Type of Conversion (ToC) and Infix
Operator Precedence (IOP) atoms of confusion.

In the case of ToC, the recall issue occurred due to unsup-
ported types of conversions (i.e., literals, unary operations, and
binary operations). In the IOP case, we needed to improve the
detection of the operation’s parenthesis hierarchy, as well as
deal with the ambiguous interpretation of ‘+‘ character, which
could indicate an addition operation or a string concatenation
operation. Therefore, we fixed it and added new rules in our
tool to guarantee 100% of precision and correctly identify all
the ACs previously found and registered in the dataset. All de-
tection rules are described in the tool’s source code repository
https://anonymous.4open.science/r/bohr-aoc-api-3E3D/.

TABLE III
ACS OCCURRENCES IN PRECISION AND RECALL EVALUATION DATASET

AC Type FastUtil Moshi Jimfs uCrop Sample
IOP 8 5 5 31 1
Pre-Inc/Dec 3 - 8 - -
Post-Inc/Dec 20 10 4 8 -
CO 18 74 31 31 1
OCB 1 - - - -
LaCF 12 65 58 28 7
AaL - - - - 4
CoLE - 2 9 - 2
TC 24 4 3 13 3
RV - - - - 2

https://github.com/vigna/fastutil
https://github.com/square/moshi
https://github.com/google/jimfs
https://github.com/Yalantis/uCrop
https://anonymous.4open.science/r/bohr-aoc-api-3E3D/

TABLE IV
PROJECTS INFORMATION AND PREVALENCE RESULTS

Library Version LoC Classes Classes
w/ACs

ACs Types IOP Pre-Inc
/Dec

Post-Inc
/Dec

CO LaCF AaL CoLE TC RV

BCEL 6.5.0 31,686 391 76 322 7 9 3 14 117 145 - 1 33 -
BeanUtils 1.9.4 11,644 111 36 174 5 5 - 3 77 87 - - 2 -
CLI 1.5.0 2,151 23 12 84 3 - - 1 23 60 - - - -
Codec 1.15 9,313 72 37 436 7 13 7 123 53 157 - 6 77 -
Collections 4.4 28,955 326 96 565 6 42 9 22 220 270 - - 2 -
Compress 1.2.1 44,730 359 174 1,155 9 88 56 139 279 360 1 20 197 15
Configuration 2.7 28,011 260 92 342 6 2 1 5 152 181 - - 1 -
DBCP 2.9.0 14,454 66 31 127 2 - - - 46 81 - - - -
DbUtils 1.7 3,074 46 19 29 2 - - - 11 18 - - - -
Digester 3.2 9,917 168 39 94 5 5 5 5 13 66 - - - -
Email 1.5 2,815 23 12 50 5 - - 1 14 32 1 - 2 -
Exec 1.3 1,757 32 11 38 4 2 - - 7 28 - - 1 -
FileUpload 1.4 2,425 39 7 26 5 - 1 6 1 17 - - 1 -
Functor 1.0 5,861 158 111 495 3 18 - - 163 314 - - - -
IO 2.11.0 14,024 180 77 358 7 11 5 8 146 133 - 2 53 -
Lang 3.12.0 29,745 215 80 880 8 138 16 52 242 369 - 13 49 1
Math 3.6.1 100,364 990 390 4,174 9 2,753 34 129 616 484 5 32 119 2
Net 3.8.0 20,199 212 86 389 6 7 29 69 64 147 - - 73 -
Pool 2.11.1 5,905 49 16 80 5 7 - 2 20 47 - - 4 -
Proxy 1.0 2,072 43 10 15 4 1 - 1 7 6 - - - -
Validator 1.7 7,619 64 41 167 5 - 1 - 37 122 - 2 5 -
Gson 2.8.9 8,342 77 33 263 7 5 3 12 142 91 - 2 8 -
Hamcrest 2.2 3,505 80 9 17 3 - - 1 3 13 - - - -
Jsoup 1.14.3 13,714 73 39 323 6 19 4 6 111 170 - - 13 -
JUnit 5.8.2 30,977 645 133 284 4 3 - 1 100 180 - - - -
Mockito 4.3.0 20,298 467 87 249 5 7 3 16 56 167 - - - -
X-Stream 1.4.19 21,859 361 164 507 6 16 9 16 231 218 - - 17 -

V. RESULTS

Once the effectiveness of our tool was confirmed, we started
the study on the prevalence of ACs in long-lived Java libraries.

A. RQ1. What is the prevalence of atoms of confusion in long-
lived Java libraries?

To provide a first insight into the prevalence of ACs, we
computed the number of ACs present in each library and the
amount of ACs per type. Table IV shows the results for all
selected libraries, the number of classes containing ACs, the
number of ACs found, and the number of types present in each
library. 11, 404 ACs were found, with an average ≈ 2.29 ACs
per class and a rate ≈ 1.00 AC per 39 lines of code.

Figure 3 brings two interesting information, (1) the preva-
lence of AC types across libraries (bottom) and (2) the
distribution of AC types over all occurrences of ACs (top).
On one hand, concerning (1), we found that Conditional
Operator and Logic as Control Flow types had 100% of
prevalence. The Pre-Increment/Decrement and Infix Operator
Precedence types reached 81,48% and 70,37% of prevalence,
respectively. Type Conversion and Post-Increment/Decrement
types achieved average prevalence rate, with 66,67% and
59,26%, respectively. The Arithmetic as Logic and Repurposed
Variables types reached both 11,11% of prevalence, the lowest
rate. On the other hand, regarding (2), the Logic as Control
Flow, Infix Operator Precedence, and Conditional Operator
types represent together more than 86% of all occurrences.
In contrast, Pre-Increment/Decrement, Change of Literal En-

coding, Repurposed Variables, and Arithmetic as Logic types
combined represent less than 2,50% of all ACs occurrences.

Figure 4 shows the absolute number of occurrences of each
AC type per library. This figure cross the information we
first presented separately in Figure 3. There it is possible
to visualize how the ACs types are diffused across libraries
and the number of each AC type occurrence in every studied
library. Thus, it is not difficult to see that Logic as Control
Flow, Conditional Operator, and Infix Operator Precedence
shows high prevalence in both cases, presence across libraries
and overall number of occurrence, while Arithmetic as Logic
and Repurposed Variables achieved the lowest rate in both.

Figure 5 presents the proportion of classes with and without
ACs for each library. We observed that 23 of the 27 libraries
had ACs in more than 20% of their classes. Functor has the
highest number of classes containing ACs (111 out 158). Over
50% of the classes in Functor library had at least one AC. On
the other hand, Hamcrest had the lowest number of classes
with ACs (9 out 80), only 11.2% of the total classes.

We found a strong correlation7 between the number of LoC
and the number of ACs (r = 0.9244) and a high degree of
correlation between the number of classes and the number
of ACs (r = 0.7793). For instance, the Math library has the
largest number of classes containing ACs (390 of 990 classes).
Also, it has the largest absolute number of occurrences of
ACs (4.174), as well as the largest number of lines of code
(100.364). It also contains the largest number of ACs types

7We computed only Pearson’s correlation in this study.

LaCF
34.05%

TC
5.64%

Post-Inc/Dec
5.43%

Others

CO
25.32%

IOP
27.08%

Atoms of
Confusion

Pre-Inc/Dec: 1.60%
CoLE: 0.67%
RV: 0.15%
AaL: 0.06%

0% 20% 40% 60% 80% 100%

Prevalence

100.00%

66.67%

59.26%

81.48%

29.63%

11.11%

11.11%

100.00%

70.37%

CO

LaCF

Pre-Inc/Dec

IOP

TC

Post-Inc/Dec

CoLE

AaL

RV

Prevalence across libraries

Fig. 3. Summary of ACs’ prevalence. Top: Distribution of AC types over all
the occurrences of ACs. Bottom: Prevalence of AC types across the studied
libraries.

found (9), tied with the Compress library, the second-largest
library in terms of lines of code (44.730). The Proxy library
possesses the fewest number of ACs occurrences (15), and is
the second smallest library in terms of lines of code (2.072).
Finally, the DBCP and DbUtils libraries have the fewest
number of distinct ACs types (2).

Table IV also shows each AC type’s occurrences found in
the libraries. The most common type was the Logic as Control
Flow with 3.800 occurrences. This AC was also quite frequent
in the C and C++ projects analyzed by Gopstein et al. in [10].
The wide usage of Logic as Control Flow AC may be due
to the short form of expressing a conditional structure, rather
than using the if-else statement [14].

Infix Operator Precedence was the second most common
AC, with 3.148 occurrences. The Math library was the main
responsible for this result. Miscellaneous math-related meth-
ods in this library contributed to a multiplicity of occurrences
for this AC. There were 2,753 occurrences in the Math project

alone, while the second library with the most occurrences of
this AC, the Lang library, had only 138 occurrences. This AC
was also the second most common in the C and C++ projects
studied in [10]. Infix Operator Precedence is encouraged to
some extent by the software engineering community. It is
common for IDEs and code formatters to offer a feature for
removing “unnecessary” parentheses. Unfortunately, this ends
up automatically adding ACs in the source code [10].

The Conditional Operator AC was the third most frequent
atom, with 2.874 occurrences, as also observed in [10]. In
that study, it was also one of the most common ACs. The
Conditional Operator AC is also encouraged by the soft-
ware engineering community. Kernighan and Pike in [13]
state that the use of the ternary operator (<condition>
? <expression> : <expression>) is good for short
expressions. In a similar prevalence study, the authors omitted
the Conditional Operator AC in their experiment because of
its high number of occurrences in practice [18].

We did not find the Omitted Curly Braces AC in any studied
library, in contrast to what was observed in [10]. In that study,
the Omitted Curly Braces was the most common AC in C and
C++ projects. However, omitting curly braces is not always
considered a bad practice in general. One of the projects
analyzed by Gopstein et al. [10] was the Linux operating
system and the Linux kernel coding style recommends that
regarding placing braces: “Do not unnecessarily use braces
where a single statement will do” [12]. In Java, on the other
hand, conventionally, the use of curly braces is encouraged
in the code standards defined by Apache and Google. The
Apache Commons Coding Standards states that: “Brackets
should begin and end on a new line and should exist even
for one-line statements” [8]. The Google Java Style Guide
states: “Braces are used with if, else, for, do and while
statements, even when the body is empty or contains only
a single statement” [17]. Thus, the different development
contexts of the Java and C/C++ languages may explain the
big difference in the results of this AC prevalence.

The Repurposed Variables AC had a significant frequency
in [10] in contrast to what we observed in our study, in which
this AC was rare, with just 18 occurrences. The Arithmetic as
Logic AC was also rare in our study with only 7 occurrences
but, this AC was not included in the study of Gopstein et al..

B. RQ2. To what extent do different types of atoms of confu-
sion co-occur, at the class level, in long-lived Java libraries?

We measured the co-occurrence of atoms in the same
class. Our goal was to observe tendencies for certain ACs to
occur together in the same Java file. Figure 7 presents a co-
occurrence matrix of atoms of confusion at the class level for
all libraries. We learned that the Conditional Operator, Logic
as Control Flow and Infix Operator Precedence ACs are more
likely to co-occur in the same class. These results confirm a
trend pointed out by the RQ1 results, as these three atoms that
co-occur more frequently at the class level are also the three
most common atoms in the libraries studied.

B
C

E
L

B
ea

n
U

ti
ls

C
LI

C
o

d
ec

C
o

lle
ct

io
n

s

C
o

m
p

re
ss

C
o

n
fi

gu
ra

ti
o

n

D
B

C
P

D
b

U
ti

ls

D
ig

es
te

r

E
m

ai
l

E
xe

c

F
ile

U
p

lo
ad

Fu
n

ct
o

r

G
so

n

H
am

cr
es

t

IO

JU
n

it

Js
o

u
p

La
n

g

M
at

h

M
o

ck
it

o

N
et

P
o

o
l

P
ro

xy

V
al

id
at

o
r

X
-S

tr
ea

m

Project

Arithmetic as Logic

Change of Literal Encoding

Conditional Operator

Infix Operator Precedence

Logic as Control Flow

Post-Increment/Decrement

Pre-Increment/Decrement

Repurposed Variables

Type Conversion

A
to

m
 o

f C
o

n
fu

si
o

n

1

10

100

500

2,753
Occurrences

Fig. 4. The absolute number of occurrences of ACs per library.

BC
EL

B
ea

n
U

ti
ls

C
LI

C
o

d
ec

C
o

lle
ct

io
n

s

C
o

m
p

re
ss

C
o

n
fi

gu
ra

ti
o

n

D
B

C
P

D
B

U
ti

ls

D
ig

es
te

r

E
m

ai
l

E
xe

c

F
ile

U
p

lo
ad

Fu
n

ct
o

r

G
so

n

H
am

cr
es

t

IO
Js

o
u

p

JU
n

it
La

n
g

M
at

h

M
o

ck
it

o

N
et

P
o

o
l

P
ro

xy

V
al

id
at

o
r

X
-S

tr
ea

m

Project

0

10

20

30

40

50

60

70

80

90

100

P
ro

p
o

rt
io

n
 o

f C
la

ss
es

 (%
)

1
9

.4
%

8
0

.6
%

3
2

.4
%

6
7

.6
%

5
2

.2
%

4
7

.8
%

5
1

.4
%

4
8

.6
%

2
9

.4
%

7
0

.6
%

4
8

.5
%

5
1

.5
%

3
5

.4
%

6
4

.6
%

4
7

.0
%

5
3

.0
%

4
1

.3
%

5
8

.7
%

2
3

.2
%

7
6

.8
%

5
2

.2
%

4
7

.8
%

3
4

.4
%

6
5

.6
%

1
7

.9
%

8
2

.1
%

7
0

.3
%

2
9

.7
%

4
2

.8
%

5
7

.2
%

3
7

.2
%

6
2

.8
%

3
9

.4
%

6
0

.6
%

4
0

.6
%

5
9

.4
%

3
2

.7
%

6
7

.3
%

2
3

.3
%

7
6

.7
%

6
4

.1
%

3
5

.9
%

4
1

.8
%

5
8

.2
%

1
1

.2
%

8
8

.8
%

5
3

.4
%

4
6

.6
%

2
0

.6
%

7
9

.4
%

1
8

.6
%

8
1

.4
%

4
5

.3
%

5
4

.7
%

Without Atoms of ConfusionWith Atoms of Confusion

Fig. 5. Proportion of classes with and without ACs per library.

Once again, we can see the influence of the Math library on
these results, boosting the Infix Operator Precedence numbers
in this analysis. De facto, we found a strong correlation
between the number of LoC and the number of AC co-
occurrences (r = 0.9130) and a high degree of correlation
between the number of classes and the number of ACs
(r = 0.7538). However, we found a low degree of correlation
between the number of contributors in the repository and the
number of AC co-occurrences (r = 0.0623).

The Arithmetic as Logic AC had the lowest numbers of co-
occurrences. We expected this behavior since, as also shown
by the RQ1 results, this atom was the least common in the
libraries. The Arithmetic as Logic AC co-occurred only with
the Conditional Operator and Infix Operator Precedence ACs.

We found 7 different ACs in a single class in the Compress
and Math libraries. Moreover, Lang, Net, and Jsoup libraries
had 6 AC types. Not so differently, we observed classes with
5 AC types in the Codec, Collections, and Gson projects.

Fig. 6. Atoms of confusion co-occurrence code snippets.

Figure 6 shows code snippets extracted from the studied
libraries in which our tool detected a co-occurrence of ACs.
The code snippet 1 was extracted from the Mockito library
and presented two Logic as Control Flow ACs. The code
snippet 2, from the Collections library, shows two Conditional
Operator ACs. The code snippet 3 has three Infix Operator
Precedence ACs in the Compress library. The code snippet
4, which our tool found in the Functor project, contains one
Logic as Control Flow AC and one Conditional Operator AC.
Finally, in the code snippet 5, extracted from Math, we have

one Infix Operator Precedence and Conditional Operator ACs.

A
ri

th
m

et
ic

 a
s

Lo
gi

c

C
h

an
ge

 o
f L

it
er

al
 E

n
co

d
in

g

C
o

n
d

it
io

n
al

 O
p

er
at

o
r

In
fi

x
O

p
er

at
o

r
P

re
ce

d
en

ce

Lo
gi

c
as

 C
o

n
tr

o
l F

lo
w

P
o

st
 In

cr
em

en
t

D
ec

re
m

en
t

P
re

 In
cr

em
en

t
D

ec
re

m
en

t

R
ep

u
rp

o
se

d
 V

ar
ia

b
le

s

Ty
p

e
C

o
nv

er
si

o
n

Arithmetic as Logic

Change of Literal Encoding

Conditional Operator

Infix Operator Precedence

Logic as Control Flow

Post Increment Decrement

Pre Increment Decrement

Repurposed Variables

Type Conversion

1

10

100

383

Occurrences

Fig. 7. Atoms of confusion co-occurrence matrix for all libraries.

C. RQ3. How long do atoms of confusion survive in long-lived
Java libraries?

Finally, we studied the prevalence evolution of the ACs in
24 libraries. As mentioned before, we did not evaluate three
libraries (i.e., Functor, Proxy, and Hamcrest) in this phase.
This is because we didn’t find enough versions of these three
libraries to assess the ACs’ evolution over time. Table V shows
data from the first and last versions of the 24 libraries. The
analysis covered a total of 455 releases. While Gson and Jsoup
libraries had the highest number of versions analyzed (39 and
38), Exec and CLI libraries had the lowest version numbers
(5 and 7).

Our tool detected the presence of ACs since the first releases
of the 24 libraries. We observed that as libraries have grown in
size (LoC), the presence of ACs also has increased. Only the
JUnit library decreased the number of ACs since the project
had a 41.55% reduction in size (LoC).

The Math and Compress libraries had the highest insertion
of ACs between the first and last versions analyzed. Math,
for example, currently has 4009 more ACs than the first
release analyzed. On the other hand, the Exec, DBUtils,
and FileUpload libraries had the smallest absolute increase.
DBUtils, for instance, has 13 more ACs, although developers
had added more than two thousand LoC.

In 12 libraries, the number of ACs grew proportionately
more than the growth of their LoCs. For example, the Gson
library had a 1,778.57% increase in the presence of ACs
and its LoC number only increased by 222.96%. However,
in 10 libraries, this growth was relatively lower. For example,
DBUtils library increased its number of classes by 170.59%,
but the number of ACs only augmented by 81.25%.

Table VI shows the evolution of the ratio number of ACs
to the number of LoCs over time. Also, we observed the

spread of ACs in library classes over time. The libraries
indicated different behaviors for the two variables observed.
In 11 libraries, the ratio of ACs to LoCs decreased. In the case
of the Codec and Validator libraries, this reduction was more
significant than 50%. The curves of these projects indicate
a decrease, almost constant, of this ratio over time. On the
contrary, 13 libraries had a growth in this ratio. Four of them,
BeanUtils, CLI, Gson, and X-Stream, showed an increase of
ACs to LoCs greater than 100%.

We observed a particular behavior in 8 libraries regarding
the percentage of classes with ACs. The variation of the
ratio of classes with ACs between the first and last versions
was inferior to 7%. Although the phenomenon seems stable
comparing just the first and later versions, there was variation
over time in these eight libraries. For example, the CLI,
Compress, Exec, and Jsoup projects had both increases and
decreases in this variable over time.

Eleven libraries increased the percentage of Java classes
with ACs in the observed period. Four libraries had more
than 100% increases: BeanUtils, IO, Gson, and X-Stream.
Moreover, the percentage grew practically in the last two
libraries with each new version. On the other hand, in five
libraries, we saw a reduction of more than 10%. The most
notable case was of the Collection library, in which in the
first analyzed version, there were 53% of classes with ACs
and, in the last version, 29,54%.

VI. FURTHER DISCUSSION AND IMPLICATIONS

A. Results Discussion

As we mentioned, Gopstein et al. [9] introduced the concept
of Atom of Confusion (AC). Previous work has shown that
ACs can affect code comprehension and hinder software main-
tenance and evolution in C and C++ projects. From the Java
code patterns of these atoms [9, 15], our study found 11.404
occurrences in the 27 projects studied. Our results showed
that 23 of the 27 analyzed systems had atoms in more than
20% of their classes (RQ1). There was a presence of atoms
of confusion in all the analyzed projects. The Conditional
Operator and Logic as Control Flow were present in all the
libraries studied, while Arithmetic as Logic and Repurposed
Variables appeared in only three projects. Moreover, our tool
did not find Omitted Curly Braces occurrences.

Concerning the co-occurrence of ACs at the class level,
we observed that there is a tendency for certain AC types
to occur together in the same class (RQ2). For instance, the
ACs Conditional Operator, Logic as Control Flow and Infix
Operator Precedence are more likely to co-occur in the same
class. This phenomenon may be related to the code style of
developers who modified the same class.

Finally, in the analysis of ACs evolution over time (RQ3),
we observed that the number of ACs increased. However,
this phenomenon did not occur similarly in the analyzed
projects. In ten projects, the number of ACs grew more
than the size of the system. In other projects, there was a
decrease in the ACs number per LOC. It is noteworthy that,
in the way we studied prevalence evolution, we can only

TABLE V
EVOLUTION OF ACS AND LOCS IN THE 24 PROJECTS

First Release Last Release Variation
Library Version Classes LoCs ACs Version Classes LoCs ACs Classes LoCs ACs

BCEL 5.2 335 23.631 276 6.5.0 391 31.686 322 16.72% 34.09% 16.67%▲
BeanUtils 1.5 62 5.196 34 1.9.4 111 11.644 174 79.03% 124.10% 411.76%▲
CLI 1.0 18 1.498 29 1.5.0 23 2.151 84 27.78% 43.59% 189.66%▲
Codec 1.1 14 937 107 1.15 72 9.313 436 414.29% 893.92% 307.48%▲
Collections 1.0 26 4.326 90 4.4 326 28.955 565 1153.85% 569.33% 527.78%▲
Compress 1.0 61 7.437 229 1.2.1 359 44.730 1.155 488.52% 501.45% 404.37%▲
Configuration 1.0 29 5.229 57 2.7 260 28.011 342 796.55% 435.69% 500%▲
DBCP 1.0 32 4.349 68 2.9.0 66 14.454 127 106.25% 232,35% 86, 76%▲
DbUtils 1.0 17 1.002 16 1.7 46 3.074 29 170.59% 206,79% 81, 25%▲
Digester 1.5 37 3.631 37 3.2 168 9.917 94 354.05% 173.12% 154.05%▲
Email 1.0 9 1.338 17 1.5 23 2.815 50 155.56% 110.39% 194.12%▲
Exec 1.0 29 1.675 33 1.3 32 1.757 38 10.34% 4.90% 15.15%▲
FileUpload 1.0 11 1.230 12 1.4 39 2.425 26 254.55% 97.15% 116.67%▲
IO 1.0 34 2.041 48 2.11.0 180 14.024 358 429.41% 587.11% 645.83%▲
Lang 1.0 26 4.319 100 3.12.0 215 29.745 880 726.92% 588.70% 780.00%▲
Math 1.0 106 7.162 165 3.6.1 990 100.364 4.174 833.96% 1301.34% 2429.70%▲
Net 1.0.0 103 8.714 132 3.8.0 212 20.199 389 105.83% 131.80% 194.70%▲
Pool 1.0 19 1.713 16 2.11.1 49 5.905 80 157.89% 244,72% 400%▲
Validator 1.0 17 1.874 87 1.7 64 7.619 167 276.47% 306.56% 91, 95%▲
Gson 1.0 54 2.583 14 2.8.9 77 8.342 263 42.59% 222.96% 1, 778.57%▲
Jsoup 0.1.1 25 2.079 78 1.14.3 73 13.714 323 192.00% 559.64% 314.10%▲
JUnit 4.12 195 9.317 104 5.8.2 95 5.446 45 -51.28% -41,55% −56, 73%▼
Mockito 2.25.0 453 15.920 208 4.3.0 467 20.298 249 3.09% 27.50% 19.71%▲
X-Stream 0.2 50 1.235 12 1.4.19 361 21.859 502 622.00% 1669.96% 4083.33%▲

confirm that the number of ACs inserted over time was more
significant than the number of ACs removed. Even so, it is
interesting to note that its occurrence has not decreased (in
absolute terms) in these systems. As already stated in previous
work, ACs negatively impact code readability; their presence
probably affects developers during maintenance tasks in these
27 libraries.

B. Implications for Researchers

The presence of atoms of confusion in long-lived Java
libraries grows over time. This phenomenon needs further
investigation into why developers insert ACs into the code.
For example, what are the causes (developers’ experience?
developer’s code style?) and consequences of this phenomenon
(bugs? time of maintenance? code readability?).

Furthermore, some types of ACs were prevalent and showed
an increasing trend in the number of occurrences. However,
other types of ACs are rare. In this sense, these results may
influence the efforts to create tools focused on detecting and
refactoring more prevalent ACs.

C. Implications for Practitioners

Previous work has shown that confusing code impacts code
comprehension and, hence, the development process. Rahman
in [22] observed that when programmers are involved in
high comprehension effort, they navigate and make edits at a
significantly slower rate. Ebert et al. in [7] observed that code
reviewers often do not understand the change being reviewed
or its context. Also in the context of software development,
developers tend to understand certain code structures more
slowly than other ones, e.g., for loops take more time to
be understood than sequences of if [1]. As well as some

programming practices also affect the code readability [6].In
the context of ACs Gopstein et al. [10] showed a strong
relationship between ACs and bug fix commits and also
pointed out that atoms tend to be more commented. Hence, it
is important to disseminate this knowledge among developers,
alerting them to the presence of these ACs in code.

In this sense, developers can use our detection tool in
continuous integration and code review processes to be aware
of the existence of ACs. Additionally, IDEs plugins could
use our tool to perform static code analysis, checking for the
presence of atoms in the source code at the time of writing,
even before this code is compiled and executed.

VII. THREATS TO VALIDITY

The threats to the validity of our investigation are discussed
using the four threats classification (conclusion, construct,
internal, and external validity) presented by Wohlin et al. [24].

A. Conclusion Validity

Threats to the conclusion validity are concerned with issues
that affect the ability to draw correct conclusions regarding
the treatment and the outcome of an experiment. To avoid this
threat, we use known metrics already used in previous studies
on the prevalence of code patterns in software [10] [18] [4].
Thus, we use the count, frequency and proportion of ACs in
the studied software as metrics.

B. Internal Validity

Threats to internal validity can affect the independent vari-
able concerning causality without the researcher’s knowledge.
Thus, they threaten the conclusion about a possible causal
relationship between treatment and outcome. In this paper, we

TABLE VI
EVOLUTION OF ACS/LOCS AND CLASSES WITH ACS IN THE 24 PROJECTS

Library

First Release Last Release Variation

ACs/
LoCs

Classes
with
AC

ACs/
LoCs

Classes
with
AC

ACs/
LoCs

Classes
with
AC

Evolution

ACs/LoCs Classes with AC

BCEL 0.01168 18.51% 0.01016 19.44% -12.99% 5.02%

BeanUtils 0.00654 11.30% 0.01494 32.40% 128.36%186.73%

CLI 0.01936 50.00% 0.03905 52.20% 101.72% 4.40%

Codec

Collections

Compress

Configuration

0.11416 42.90% 0.04682 51.40% -58.99% 19.81%

0.0208 53.80% 0.01951 29.40% -6.20% -45.35%

0.03079 47.50% 0.02582 48.50% -16.14% 2.11%

0.0109 48.30% 0.01221 35.40% 12.01% -26.71%

DBCP 0.01563 28.10% 0.00879 47.00% -43.80% 67.26%

DbUtils 0.01597 35.30% 0.00943 41.30% -40.92% 17.00%

Digester 0.01019 27.00% 0.00948 23.20% -6.98% -14.07%

Email 0.0127 55.60% 0.01776 52.20% 39.80% -6.12%

Exec 0.0197 34.50% 0.02163 34.40% 9.78% -0.29%

FileUpload 0.00976 27.30% 0.01072 17.90% 9.90% -34.43%

IO 0.02352 17.60% 0.02553 42.80% 8.55% 143.18%

Lang 0.02315 50.00% 0.02959 37.20% 27.78% -25.60%

Math 0.02304 29.20% 0.04158 39.40% 80.50% 34.93%

Net 0.01515 31.10% 0.01926 40.60% 27.13% 30.55%

Pool 0.00934 21.10% 0.01355 32.70% 45.05% 54.98%

Validator 0.04643 58.80% 0.02192 64.10% -52.78% 9.01%

Gson 0.00542 16.70% 0.03153 42.90% 481.65%156.89%

Jsoup 0.03752 52.00% 0.02355 53.40% -37.24% 2.69%

JUnit 0.01116 22.10% 0.00826 20.60% -25.97% -6.79%

Mockito 0.01307 18.80% 0.01227 18.60% -6.11% -1.06%

X-Stream 0.00972 20.00% 0.02297 45.40% 136.38%127.00%

do not seek to demonstrate casual relationships but only to
discuss occurrences and co-occurrences of ACs. Hence, this
kind of threat does not apply to our study.

C. Construct Validity

Construct validity concerns generalizing the result of the
study to the concept or theory behind the study. We adopted
a peer debriefing approach for research design validation and
document review. Our goal was to avoid inconsistencies in
the interpretation of the results. Additionally, we developed
a tool that automates our study’s data collection, seeking to
prevent or alleviate the occurrence of human-made mistakes
in this stage. To improve the confidence in our tool, we also
evaluated its precision and recall looking to avoid bias caused
by possible false positives and false-negatives results.

D. External Validity

Threats to external validity are conditions that limit our
ability to generalize the results of our study to industrial
practice. The main threats to this validity are related to the
domain and sample size (i.e., the 27 open-source projects)
we used in this study. Concerning the sample domain, we
try to deal with this threat by arguing that those projects
present several usage scenarios. Additionally, concerning the

sample size, we dealt with this threat using diversity and
longevity criteria. We chose Apache Commons and picked
up other well-known libraries developed by different teams
to get more diversity regarding team knowledge, skills, and
coding practices. Finally, we chose open-source projects that
are long-lived as a way to guarantee a degree of maturity and
stability.

VIII. FINAL CONSIDERATIONS

In this study, we investigated the prevalence and evolution
over the time of atoms of confusion in 27 open source long-
lived Java libraries. In the prevalence analysis, our results
showed that atoms of confusion were present in all the studied
libraries. However, we also show a non-homogeneous presence
of ACs in the projects. Three ACs were the most prevalent in
almost all projects, and we rarely found some ACs. This work
can aid developers to avoid writing source code that contains
atoms, as it may lead to code comprehension-related problems
during software maintenance and evolution.

In addition to the results of this work, we also provide
essential infrastructure for conducting future research. We give
a manfully verified dataset and a validated tool for identify-
ing atoms of confusion in Java-based systems. This dataset
enables the validation of new tools for atom identification,
while our tool enables programmers to find and remove ACs
from Java source code. All our materials are available in
https://anonymous.4open.science/r/bohr-aoc-api-3E3D/.

In future work, we intend to study the impact of ACs on
software quality attributes, such as bug occurrence, technical
debit, code complexity, and maintainability effort.

REFERENCES

[1] Shulamyt Ajami, Yonatan Woodbridge, and Dror G Fei-
telson. Syntax, predicates, idioms—what really affects
code complexity? Empirical Software Engineering, 24
(1):287–328, 2019.

[2] K.H. Bennett, V.T. Rajlich, and N. Wilde. Software
evolution and the staged model of the software lifecycle.
volume 56 of Advances in Computers, pages 1–54. Else-
vier, 2002. doi: https://doi.org/10.1016/S0065-2458(02)
80003-1. URL https://www.sciencedirect.com/science/
article/pii/S0065245802800031.

[3] Fernando Castor. Identifying confusing code in swift
programs. In Proceedings of the VI CBSoft Workshop on
Visualization, Evolution, and Maintenance. ACM, 2018.

[4] Francisco Gonçalves de Almeida Filho, Antônio
Diogo Forte Martins, Tiago da Silva Vinuto, José Maria
Monteiro, Ítalo Pereira de Sousa, Javam de Cas-
tro Machado, and Lincoln Souza Rocha. Prevalence
of bad smells in pl/sql projects. In Proceedings of the
27th International Conference on Program Comprehen-
sion, ICPC ’19, page 116–121. IEEE Press, 2019. doi:
10.1109/ICPC.2019.00025. URL https://doi.org/10.1109/
ICPC.2019.00025.

[5] Benedito de Oliveira, Márcio Ribeiro, José Aldo Silva
da Costa, Rohit Gheyi, Guilherme Amaral, Rafael

https://anonymous.4open.science/r/bohr-aoc-api-3E3D/
https://www.sciencedirect.com/science/article/pii/S0065245802800031
https://www.sciencedirect.com/science/article/pii/S0065245802800031
https://doi.org/10.1109/ICPC.2019.00025
https://doi.org/10.1109/ICPC.2019.00025

de Mello, Anderson Oliveira, Alessandro Garcia, Rodrigo
Bonifácio, and Baldoino Fonseca. Atoms of confusion:
The eyes do not lie. In Proceedings of the 34th Brazilian
Symposium on Software Engineering, SBES ’20, page
243–252, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450387538. doi:
10.1145/3422392.3422437. URL https://doi.org/10.1145/
3422392.3422437.

[6] Rodrigo Magalhães dos Santos and Marco Aurélio
Gerosa. Impacts of coding practices on readability.
In Proceedings of the 26th Conference on Program
Comprehension, ICPC ’18, page 277–285, New York,
NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450357142. doi: 10.1145/3196321.3196342.
URL https://doi.org/10.1145/3196321.3196342.

[7] Felipe Ebert, Fernando Castor, Nicole Novielli, and
Alexander Serebrenik. Confusion detection in code
reviews. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
549–553, 2017. doi: 10.1109/ICSME.2017.40.

[8] The Apache Software Foundation. Coding stan-
dards, 2022. URL https://commons.apache.org/proper/
commons-net/code-standards.html.

[9] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong,
Yanyan Zhuang, Martin K.-C. Yeh, and Justin Cappos.
Understanding misunderstandings in source code. In
Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2017, page
129–139, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450351058. doi:
10.1145/3106237.3106264. URL https://doi.org/10.1145/
3106237.3106264.

[10] Dan Gopstein, Hongwei Henry Zhou, Phyllis Frankl, and
Justin Cappos. Prevalence of confusing code in software
projects: Atoms of confusion in the wild. MSR ’18,
page 281–291, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450357166. doi:
10.1145/3196398.3196432. URL https://doi.org/10.1145/
3196398.3196432.

[11] Dan Gopstein, Anne-Laure Fayard, Sven Apel, and Justin
Cappos. Thinking aloud about confusing code: A
qualitative investigation of program comprehension and
atoms of confusion. ESEC/FSE 2020, page 605–616,
New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450370431. doi: 10.
1145/3368089.3409714. URL https://doi.org/10.1145/
3368089.3409714.

[12] The kernel development community. Linux kernel coding
style, 2022. URL https://www.kernel.org/doc/html/v4.10/
process/coding-style.html.

[13] Brian W Kernighan and Rob Pike. The practice of
programming. Addison-Wesley Professional, 1999.

[14] Chris Langhout. Investigating the perception and effects
of misunderstandings in java code. Master’s thesis, Delft
University of Technology, 2020.

[15] Chris Langhout and Maurı́cio Aniche. Atoms of confu-

sion in java, 2021.
[16] Luan Lima, Lincoln Rocha, C. I. M. Bezerra, and

Matheus Paixao. Assessing exception handling test-
ing practices in open-source libraries. Empirical
Software Engineering, 26, 09 2021. doi: 10.1007/
s10664-021-09983-3.

[17] Google LLC. Google java style guide, 2022. URL https:
//google.github.io/styleguide/javaguide.html#s4.1-braces.

[18] Flávio Medeiros, Gabriel Lima, Guilherme Amaral, Sven
Apel, Christian Kästner, Márcio Ribeiro, and Rohit
Gheyi. An investigation of misunderstanding code pat-
terns in c open-source software projects. Empirical
Softw. Engg., 24(4):1693–1726, August 2019. ISSN
1382-3256. doi: 10.1007/s10664-018-9666-x. URL
https://doi.org/10.1007/s10664-018-9666-x.

[19] Roberto Minelli, Andrea Mocci, and Michele Lanza. I
know what you did last summer - an investigation of
how developers spend their time. In 2015 IEEE 23rd
International Conference on Program Comprehension,
pages 25–35, 2015. doi: 10.1109/ICPC.2015.12.

[20] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez,
Carlos Noguera, and Lionel Seinturier. Spoon: A Library
for Implementing Analyses and Transformations of Java
Source Code. Software: Practice and Experience, 46:
1155–1179, 2015. doi: 10.1002/spe.2346. URL https:
//hal.archives-ouvertes.fr/hal-01078532/document.

[21] Gustavo Pinto, Weslley Torres, Benito Fernandes, Fer-
nando Castor, and Roberto S.M. Barros. A large-scale
study on the usage of java’s concurrent programming
constructs. Journal of Systems and Software, 106:59–
81, 2015. ISSN 0164-1212. doi: https://doi.org/10.1016/
j.jss.2015.04.064. URL https://www.sciencedirect.com/
science/article/pii/S0164121215000849.

[22] Akond Rahman. Comprehension effort and programming
activities: Related? or not related? In Proceedings
of the 15th International Conference on Mining Soft-
ware Repositories, MSR ’18, page 66–69, New York,
NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450357166. doi: 10.1145/3196398.3196470.
URL https://doi.org/10.1145/3196398.3196470.

[23] Spencer Rugaber. Program comprehension. Encyclope-
dia of Computer Science and Technology, 35(20):341–
368, 1995.

[24] Claes Wohlin, Per Runeson, Martin Hst, Magnus C.
Ohlsson, Bjrn Regnell, and Anders Wessln. Experi-
mentation in Software Engineering. Springer Publish-
ing Company, Incorporated, 2012. ISBN 3642290434,
9783642290435.

[25] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing,
Ahmed E. Hassan, and Shanping Li. Measuring program
comprehension: A large-scale field study with profession-
als. IEEE Transactions on Software Engineering, 44(10):
951–976, 2018. doi: 10.1109/TSE.2017.2734091.

https://doi.org/10.1145/3422392.3422437
https://doi.org/10.1145/3422392.3422437
https://doi.org/10.1145/3196321.3196342
https://commons.apache.org/proper/commons-net/code-standards.html
https://commons.apache.org/proper/commons-net/code-standards.html
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/3196398.3196432
https://doi.org/10.1145/3196398.3196432
https://doi.org/10.1145/3368089.3409714
https://doi.org/10.1145/3368089.3409714
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://google.github.io/styleguide/javaguide.html#s4.1-braces
https://google.github.io/styleguide/javaguide.html#s4.1-braces
https://doi.org/10.1007/s10664-018-9666-x
https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
https://www.sciencedirect.com/science/article/pii/S0164121215000849
https://www.sciencedirect.com/science/article/pii/S0164121215000849
https://doi.org/10.1145/3196398.3196470

	Introduction
	Related Work
	Methodology
	Study Design
	Research Questions
	Selection of Long-lived Java Libraries

	The ACs Search Tool
	Search Tool Dataset
	Precision and Recall Evaluation

	Results
	RQ1. What is the prevalence of atoms of confusion in long-lived Java libraries?
	RQ2. To what extent do different types of atoms of confusion co-occur, at the class level, in long-lived Java libraries?
	RQ3. How long do atoms of confusion survive in long-lived Java libraries?

	Further Discussion and Implications
	Results Discussion
	Implications for Researchers
	Implications for Practitioners

	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Final Considerations

