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Abstract—Urbanization is accelerating worldwide, giving rise
to serious traffic problems. Traffic wave, known as stop-and-
go traffic or phantom intersection, is one of the most significant
traffic oscillation patterns studied in Traffic Engineering. Usually
these studies are numerical experiments that investigate specific
places, such as a crossroad or a highway section, and their
findings cannot, therefore, be easily applied to sensing device
data in a systematic computational approach. In this regard,
visual analytics can help by combining automated analysis with
interactive visualization for effective understanding, reasoning,
and decision-making. In this paper, we present a novel approach
for visualizing traffic oscillation patterns by visualizing the
objects’ movement in space over time, inspired by vector field
visualization. We propose an algorithm to control and synchro-
nize the visualization time; a systematic stepwise methodology
for exploring sensing device data; and a visualization tool that
computes the trajectory data in parallel on the GPU at interactive
frame rates. Moreover, our approach is designed to support both
batch-processed and streaming data applications. We also present
the benefits and limitations of our visualization proposal based
on domain expert feedback. Finally, we present performance tests
with very encouraging results to support our approach.

I. INTRODUCTION

Urbanization is a process that is accelerating worldwide,
giving rise to serious traffic problems. To address this problem,
recent research efforts have been focusing on the use of
trajectory data, collected from sensing devices such as RFID
tags, video cameras, laser scanners, and smartphones [1], [2].
Because of the huge amount of data involved, to analyze tra-
jectory data is not an easy task, and, often, requires exploratory
visualization for detecting and describing patterns, trends, and
relations within the data [3].

Many researchers have focused on the global aspects of
traffic flows [4]–[6]. However, it is also essential to analyze
local mobility patterns because the behaviors of individuals
affect the traffic flow directly. Frequently, a traffic flow behaves
like a supersaturated solution, in which small disturbances,
e.g., a car breaking or changing lanes could cause a chain
reaction. Those disturbances may cause traffic waves that
could become traffic jams.

Traffic wave, known as stop-and-go traffic or phantom
intersection, is one of the most significant traffic oscillation
patterns [7]. This phenomenon is observable through the
engagement of vehicles in repeated deceleration-acceleration
cycles, and it is likely to incur many adverse impacts on traffic
efficiency and sustainability. Researchers have conducted nu-
merous studies investigating traffic oscillation with empirical

observations and theoretical models, trying to understand the
propagation of traffic waves (see [8] for an overview). In
those studies, the main causes of traffic waves were identified:
traffic lights, crossings, access ramps, lane changes, lane
blocks, uphill gradients, presence of trucks, and accidents.
However, most of those studies are numerical experiments that
investigate specific places, such as a crossroad or a highway
section, and their findings cannot, therefore, be easily applied
to sensing device data in a systematic computational approach.

In this regard, visual analytics can help by combining
automated analysis with interactive visualization for effective
understanding, reasoning, and decision-making on the basis
of a very large and complex dataset [9], especially for urban
computing [2]. Furthermore, visualization tools are particu-
larly important for analyzing phenomena and processes that
are unfolding in geographical space because the heterogeneity
of the space and the variety of properties cannot be adequately
represented for fully automatic processing [10].

Moreover, most existing visual analysis approaches do not
address the time dimension appropriately, because they focus
only on the spatial visualization or use some form of temporal
dimension simplification. Space and time are inseparable in
visual analysis of the dynamics of traffic mobility. The sin-
gularities in any of those dimensions must not be discarded
because they may reveal implicit relationships [11]. Therefore,
to visualize traffic oscillation patterns, the time dimension is
essential.

Because trajectories represent moving objects, it is natural
to analyze them by visualizing the dynamic characteristics of
the objects’ movement through animation. That visualization,
since it uses the animation paradigm, promotes the real under-
standing of the objects’ collective movement in the city, and
the perception of the impacts of individual behaviors on traffic
flow.

This paper proposes a new approach that can be used by
domain users and city planners to interactively and dynami-
cally visualize traffic oscillation patterns from trajectory data
collected by sensing devices. The final visual result of our
technique was inspired by animated vector field visualization
techniques [12]. Therefore, the movement of an object leaves
a trail that persists on the road, which is similar to a path line
in vector field visualization. However, in our visualization, this
trail is slowly fading out, and its length represents the mag-
nitude of the object’s speed. Notice that we do not compute



Fig. 1. Screenshot of a visualization of the traffic flow from 1,811 taxis
moving at the same time. The image depicts the main functionalities of
our developed tool such as the customization panel (a), where the user can
set the marker size, speed limit, trail width, visual enhancement, and other
parameters; the date and time display (b); the time control (c); the trail speed’s
scale (d) and color encoding (e); and zoom control (f). A video showing the
animated visualization is available on https://youtu.be/uycpCRSPyLo.

vector fields, i.e., the trajectory data are processed to visualize
the objects’ movement directly. The main contributions of our
approach are:

• We present a method to facilitate the analysis of traffic
oscillation patterns by visualizing the objects’ movement
in the space over time. To this purpose, we use visual aids,
such as trails, shapes, and color encoding, to perceive
behaviors, such as speed, direction, acceleration, and
location (see Figure 1);

• We propose a method to control and synchronize the
visualization time that allows an analyst to visualize hours
of movement data, in real time, in just a few minutes.
Unlike existing approaches that dynamically visualize
trajectory data as an animation, our method provides more
time control functionalities – pausing, fast forwarding,
rewinding, and different speeds. Thus, even when the
visualization is accelerated at high speeds, our visual aids
allow the analyst to perceive the traffic dynamics in an
overview. To support all this, we devised a structured data
model based on the idea of animation key frames;

• We present a systematic stepwise methodology for ex-
ploring sensing devices data. Our approach allows a non-
expert user to visualize traffic dynamics from raw data
– latitude, longitude, and time stamp. Unlike many other
trajectory data visualization techniques, we do not require
map matched data. This work is the first step towards an
end-to-end solution;

• We developed a visualization tool that works in parallel
on GPU with interactive frame rates, even for comparably
large datasets. In our performance tests using an ordinary
workstation, we were able to visualize more than 160,000
animated graphic elements at 20fps.

Besides, our approach was designed to support both batch-
processed and streaming data applications. In the case of on-
line streaming applications, we use the framework proposed
by Sacharidis et al. [13] to discover hot motion paths. In
their work, the authors present a distributed approach for
processing and filtering location updates in the client side. That
framework exploits the computational capabilities at the client
side, and substantially reduces the processing cost at the server
side. In addition, this method minimizes the communication
overhead due to fewer location updates. Therefore, the steps
of our data preparation phase, see Figure 2, were designed to
be performed at interactive frame rates.

Finally, we report an evaluation carried out by an urban
planner expert that shows the benefits and limitations of our
visualization technique.

The remainder of this paper is organized as follows. In
Section II, we review the related work. In Section III, we
describe our approach. In Section IV, we report our qualitative
evaluation. In Section V, we discuss our implementation. In
Section VI, we conclude our paper with an outline of future
work.

II. RELATED WORK

Trajectory data of urban centers are being widely studied
thanks to their ready availability nowadays. We can easily
find surveys in many fields of research such as Urban Com-
puting [2], Data Mining [14], Traffic Engineering [7], and
Geographic Information [15]. The visualization community
has been helping these research fields by providing effective
ways to integrate humans into a data exploration process [16].
Andrienko and his coauthors present an interesting survey
of systems and techniques for visual analytics of move-
ment data [10] and a list of challenges in geospatial visual
analysis [17]. In this section, we present the related works
considering two aspects: global and local mobility patterns.

Global mobility patterns. The majority of the existing
research is focused on analyzing global aspects of trajec-
tory data [18]–[20]. Some techniques represent movements
between regions as a graph, in which regions are graph
nodes and the flows between them are treated as weighted
directed edges [5], [6], [21]. Movement occurring between
those areas is simplified and visualized using a flow map.
Those approaches often aggregate trajectories in space or time
to facilitate visual analysis. So, one can no longer see the
changes of spatial positions of objects, i.e., the very essence
of movement is lost [22]. Unlike these works, our approach
was designed to visualize individual behaviors in traffic flow.

Local mobility patterns. There is not much work on the
analysis of the local mobility patterns. Kraak [23] proposed the
technique space-time cube, which combines time and space in
a single 3D display. Movement behavior of an object is shown
as a 3D line. The slope of a line segment indicates the speed
of movement, e.g., gradual rise means high speed and a steep
slope signifies slow movement. Tominsk and coauthors ex-
tended this technique to the Stacking-based Visualization [24]
and The Great Wall of Space-Time [25]. These methods



Fig. 2. Our approach’s pipeline: in the Data Preparation phase, the system receives raw data from a data source, cleans them and structures them in an
animation frame dataset. This frame dataset is rendered in the Visualization phase, which generates graphic elements that are sent to the display.

are quite limited with respect to the number of trajectories
they can display. Moreover, the use of 3D visualization may
lead to ambiguity due to perceptual problems like potential
occlusions [26]. Our method allows the visualization of a
great number of objects in 2D space, with minimal cluttering.
Guo et al. [27] proposed a visualization method to investigate
local traffic patterns and abnormal behaviors. They analyze
a local traffic dataset at a road intersection collected through
several laser scanners and other auxiliary devices. Despite the
fact that this approach allows the visualization of individual
moving cars through animation of box-like representations,
they do not use visual encoding to depict the object’s speed.
So, unlike ours, with their approach, it is not possible to
visualize traffic oscillation patterns, i.e., traffic waves. Poco et
al. [28] proposed a visualization of the traffic dynamics based
on the movement of multiple particles in a vector field. They
presented a vector-valued function to adapt vector field over
road networks. In that method, a particle moves in the field
according to a vector’s magnitude, computed from the average
road speed of traffic, so that individual speed variations are not
visualized. Thus, this approach is not suitable for visualizing
traffic oscillation patterns. In fact, our approach neither uses
vector fields nor computes the closest path for each trajectory.
Both are expensive and time-consuming tasks.

Other libraries and tools. Recently, Uber Engineering has
released a framework for visual exploratory data analysis of
large datasets [29]. Although there is a performance demo
using a large taxi trajectory dataset, that framework does not
attempt to be a systematic approach for visual analysis of the
traffic’s dynamics. However, their framework can be used for
rendering the visualization. Finally, Treiber [30] presents a
microsimulation of traffic flow with six scenarios depicting
the most common problems studied in Traffic Engineering.
Despite being didactic, Treiber’s work is limited with respect
to the number of active objects, and uses a naı̈ve visualization
technique.

III. OUR APPROACH

A naı̈ve approach to visualize trajectory data as an anima-
tion is to interpolate, per time frame, a new point for each
trajectory, i.e., to compute the locations of all moving objects
at a specific time, see Figure 4. When movement attributes
such as speed and acceleration need to be represented using
shapes and color encodings, extra computations are required
per frame. Furthermore, if trails of the moving objects are
needed, the previous locations need to be found for each
moving object, which requires a lot of extra computations.

In a typical trajectory dataset, it is common to have thousands
of objects moving at the same time. Thus, all of those extra
computations may impair visualization.

In order to visualize thousands of objects at interactive
speed, we need a better solution. So, we propose a systematic
stepwise methodology that consists of two phases (represented
by the yellow boxes in Figure 2): the Data Preparation phase
and the Visualization phase. When the raw data enters the
Data Preparation phase, it undergoes three steps in pipeline:
the Cleaning step (Section III-A), which removes trajectory
inconsistencies; the Preprocessing step (Section III-B), which
precomputes space-time attributes, and form the trajectories;
and the Normalization step (Section III-C), which structures
the trajectories to fit our model. The Visualization phase
receives the result of the Data Preparation phase, processes two
steps in pipeline: the Rendering step (Section III-D), which
receives a structured frame data to be rendered and composes
images for the visualization; and the Visual Enhancement step
(Section III-E), which enhances the attributes of the previously
generated images in order to facilitate visual analysis. The
algorithms of the Visualization phase are executed in parallel
on the GPU.

A. Cleaning

The collection of raw data often comes with inaccuracies
caused by the data acquisition devices. So, the Cleaning step
mainly removes: the points with bad accuracy; the sampling
points outside the analysis range; the duplicated points; and
the unrealistic trajectory segments with very high speeds. This
step, which was based on Zheng’s work [14], produces a point
dataset p for the next steps.

For an on-line application, we adopted the distributed ap-
proach for processing and filtering location updates presented
by Sacharidis et al. [13]. Each client user executes an algo-
rithm that cleans and compresses its trajectory on-the-fly. For
a batch-processed data application, the data cleaning algorithm
is O(n) on the number of points in the dataset p, where
n = |p|. This step is performed only once for the dataset.

B. Preprocessing

To minimize the high computational cost of rendering the
large amount of graphic elements in a dynamic visualization,
our technique preprocesses the trajectory data so that ordering
operations and measures, such as distance and speed, are
calculated beforehand and stored in the dataset as attributes.

The first operation in this step consists in traversing the
point dataset p and, for each point in the same trajectory,



Fig. 3. For each point pi in a trajectory t, the attributes distance, direction
and speed are precomputed, and the references to its neighbors are kept for
navigating between points during rendering.

determine the following attributes: current speed, distance
and direction to the next point, previous neighbor pi−1, next
neighbor pi+1, and unique identifier pid; and add them to
the point dataset (see Figure 3). The first three attributes are
computed from the raw data (latitude, longitude, time stamp),
and the last three attributes are used to facilitate the navigation
between points. All attributes are stored in a hash map and
indexed by pid.

In this preprocessing step, a new trajectory dataset t is also
created to reduce the complexity of changing the speed used
in the visualization. The most important attributes of each
element in t are the trajectory’s identifier tid and its starting
time. Next, to know which objects are active at a specific time,
the dataset is sorted by starting time and stored in a hash map
indexed by tid.

When dealing with batch-processed data, this algorithm has
linear complexity on the number of points of the dataset p
plus the cost to sort the trajectory dataset t. So, the total
cost of this step is O(n) + O(m log(m)), where n = |p|
and m = |t|. This step is also performed only once for the
data selection. In the case of on-line applications, we assume
that the trajectory points are received already sorted, and the
attributes are already computed on the client side.

C. Normalization

To visualize hours or days of moving object data as an
animation, a synchronized time control is necessary to view
the animation at a higher speed, which provides an overview
of the traffic flow and reduces the analysis time significantly.
Also, pausing and rewinding the animation is essential to
analyze a particular event in detail. For example, with basic
map interaction such as zooming and panning, the analyst can
focus on the place where the event is happening and view the
objects moving at real world speed.

However, this action overloads the rendering process during
the animation. For example, suppose an object whose position
was captured every second. To visualize an animation that
depicts the movement of this object with exhibition speed
consistent with the real world speed on the map, it may be
necessary to use spatial interpolation to generate interme-
diate points. Therefore, the slower the animation speed is,
the more intermediate points are required, undermining the
visualization’s performance. On the other hand, the higher the
animation speed is, the less points are interpolated, or even
original data points can be discarded.

To solve both problems, we use the pose-to-pose principle
of animation [31], which defines key frames and determines
the animation speed by the number of frames. For this purpose,
all trajectories must be normalized, i.e., for each trajectory, a

Fig. 4. Example of normalizing two trajectories t0 and t1. (a) Original
trajectories with their own point frequency. (b) Computing the new points
for each trajectory corresponding to key frame times fi. (c) Normalized
trajectories with points corresponding to the key frame times.

new point corresponding to each key frame time is calculated
by interpolation.

In the example of Figure 4, for each animation key frame
time fi, a new corresponding point is interpolated for each
trajectory (t0 and t1). To simplify the interpolation process,
the algorithm uses the point attribute nextpoint to navigate
through the trajectory’s points. Finally, the frame data is
ordered by the point attribute time and stored in a queue f to
optimize the rendering process explained in the next section.

For a batch-processed data application, this algorithm is
executed only once for the dataset. The complexity is linear
on the number of points of the dataset p. However, it is also
necessary to order the frame dataset f to speed up the rendering
step. Hence, the overall complexity is O(n) + O(k log(k))
where n = |p| and k = |f |. When we process a slow-speed
animation, we have k > n, because points are interpolated.
Otherwise, k < n, for high-speed animation.

For an on-line application, the normalization runs on-the-
fly. The key frame times are synchronized by a heartbeat
network protocol [32]. When necessary, the client side sends
its location at a regular interval in the order of seconds. So,
it is not necessary to sort the frame dataset. For reducing
the communication between client and server, the algorithm
uses a dead reckoning approach [33], in which the server side
can estimate an object’s current position by using previous
information: location, speed and direction. Even in an on-
line application, the frame data are kept for historical records,
enabling visualization rewinding.

D. Rendering

One of the goals of our technique is to create a trail effect
for each object so the analyst perceives the dynamics of an
object’s movement through the magnitude of its speed, through
its direction and through its presence. An animated overview
with multiple trails promotes the perception of the objects’
flow evolution (see Figure 7-d). The final visual result was
inspired by vector field pathlines [34], [35].

In this step, we want to render an image with a huge
amount of objects and their respective trails at a minimal
computational cost to compose a dynamic visualization. First,
let us consider the image of a single object crossing a map



Fig. 5. Rendering an object’s trail, frame by frame fi. In this example, the
object was at 60 km/h in frame f0, then decelerated in frames f2 to f4.

and leaving a trail that disappears according to an exponential
function (Figure 5). In each animation frame fi, the trail is
extended by one line segment, while the opacity of all the lines
already drawn is decreased. The opacity value for a trajectory
point pn is given by α(pn) = α0q

n−1, where the factor q
controls how much of the trail disappears per animation time
frame. Thus, the greater the value of q is, the larger the length
of the trail gets. There is a direct relation between the length
of the trail and the corresponding object’s speed. In Figure 5,
for example, the object’s speed in frame f5 is low, because the
trail’s length between f4 and f5 is short. Besides trail length,
we also encode speed magnitude as color and as the size of
the marker.

Our technique uses the information in the frame dataset f
and the object attributes in the point dataset p generated in
previous steps to render all active objects in an animation
frame at a low computational cost. The rendering process
is computed in parallel on the GPU. We exploit the texture
mapping capabilities of modern graphics hardware to optimize
the process. We have developed texture-based primitives, such
as line and circle, that increase the system’s performance ten
times when compared to common geometric primitives. Thus,
we achieve high rendering performance at interactive frame
rates. Furthermore, the algorithm has linear complexity on the
number of active objects in a time frame. In this step, the same
algorithm can be used without any changes in on-line as well
as in batch-processed data applications.

E. Visual Enhancements

The speed and direction are essential attributes to get a
better understanding of the traffic flow dynamics. This step
highlights those attributes through a set of image process-
ing operations, such as color correction, alpha cutting, and
contrast. The analyst is supported by a preset of visual
enhancements to highlight the object’s speed’s magnitude and
direction. First of all, the object’s trails are clipped to represent
the current speed value of an object. Then, the opacity trail is
thresholded by a parameter g, and the trail color is modified
(Figure 6-b). The other visual enhancement consists of a
combination of the two previous enhancements, so we get
the full trail with highlighted speed magnitude (Figure 6-c).
Furthermore, a speed reference scale is displayed on the map
(Figure 6). The scale is calculated considering: the factor q
(see Section III-D), the map’s zoom level and the threshold g.

The visual enhancements are computed with shader pro-
grams that run directly on the GPU. We receive a texture

Fig. 6. Visual enhancements applied to an object’s trail. (a) Original
trail fading according to an exponential function. (b) The trail was cut
proportionally to the object’s speed and its color was modified. (c) a e b
blended.

in a frame buffer from the Rendering step and then the
fragments’ colors are filtered all at once. In our experiments,
the computations to filter a frame buffer impact the graphics
rendering performance only by 5%, approximately.

IV. EVALUATION BY EXPERT

We developed a visualization tool (Figure 1) to test our
approach, and adopted a qualitative test methodology based
on field observation [36]. According to this methodology, we
presented four simulated scenarios to a specialist, and we
asked him to answer two simple questions for each scenario: 1)
is there any traffic anomaly? and 2) what was its cause? Also,
during the evaluation, we asked the interviewee to describe
the traffic flow dynamics.

The trajectory data for those scenarios were generated
by a simulator [30] that uses three traffic flow models: the
Intelligent-Driver Model to simulate the accelerations and
braking decelerations of the drivers [37]; the MOBIL Model
to allow vehicles to change lanes according to the safety and
incentive criteria [38]; and the Boundary Conditions Model
to exploit inflow and outflow conditions [39]. In the cited
works, all those models were validated with empirical traffic
observations.

We chose simulated scenarios for our evaluation for two
reasons: to purposely start disturbances in the traffic flow and
to have a controlled environment with no ambiguities. Thus,
we could assess with certainty whether the specialist perceives
when, where and why the anomaly occurred. For example, in a
specific place and time, we can make a vehicle abruptly break
or change lanes, causing a chain reaction, i.e., a traffic wave.
Those simulations are widely used in Traffic Engineering to
investigate the effects of new traffic policies before putting
them into operation.

For the evaluation, we selected a specialist who has a
master’s degree in Transportation Studies and a doctorate in
Urban Planning Studies. Nowadays, he is a university associate
professor and teaches an Urban Planning course. Besides his
academic experience, he also has more than ten years of
experience in urban intervention projects, such as tunnels and
overpasses, for improving the traffic flow of a big city.

At the beginning of the evaluation, the specialist freely
used the visualization tool so that he became familiar with
its functionality. At that moment, we used a real trajectory
dataset of two big cities captured by taxi GPS sensors. After



Fig. 7. Circular road scenario. (a) Dense and stable traffic without conges-
tions. The vehicles are moving at a speed close to the limit. (b) A car breaks
abruptly. (c) Vehicles following close behind the breaking car change lanes
propagating the perturbation to the other lanes. (d) Then, a traffic wave is
formed and moves in the opposite direction of the flow.

that, we presented to him four simulated scenarios: circular
road, on-ramp, lane closure and uphill gradient.

A. Circular Road

The circular road is a simulation with three-lane traffic
in a closed system. This is the simplest scenario since it
primarily depends on the speed limit and the road density.
Urban planners normally use it to test the optimal speed limit
for a given road density [40]. Besides, this scenario is very
effective for analyzing the effects and the behavior of traffic
waves [7].

Although the simulation prepared for this scenario was a
two-hour-long simulation, it could be fast forwarded to be
visualized in a few minutes. The first hour depicts a dense
and stable traffic without congestions of 20 vehicles/km/lane
and a speed limit of 60 km/h (Figure 7-a). At the beginning
of the second hour, a car breaks abruptly (Figure 7-b). Then
the vehicle just behind has to brake as well to maintain the
safety distance. As a consequence, the next vehicle behind has
to brake even more and so on. This disorder destabilizes the
traffic flow of all lanes causing a traffic wave (Figure 7-d).

In the test, the specialist promptly identified the place and
the car that caused the disturbance. His evaluation mainly con-
sisted of observing changes in trail length, color and marker
size (Figure 7-b). After identifying the place of disturbance,
the specialist fast rewound the visualization to initiate a more
detailed exploration by also zooming-in on the map, slowing
down the animation and changing the visual enhancement to
estimate the car speed before and after breaking abruptly. He
said that the disturbance propagation occurs because of the
lane changes of vehicles following close behind (Figure 7-
c). He also perceived that the disorder was dying out in this
simulation, i.e., the traffic flow would return to the initial
equilibrium, although he did not see the visualization until
that moment.

Fig. 8. On-ramp scenario. (a) Vehicles access the main road and cause a
traffic wave. (b) The on-ramp access generated two traffic waves. In this
visualization, we used a color map to depict a speed range of 0 to 10 km/h.

B. On-Ramp

The on-ramp scenario is an open system that simulates
possible traffic bottlenecks caused by an access ramp [41].
In fact, the on-ramp concept poses some situations in which
vehicles access an already busy road, e.g., an access exit of
a mall or an intersection. This scenario is more tricky than
the circular road because one must consider the inflow of the
main and of the access roads.

This test was generated from a two-hour-long simulation
to evaluate the impacts of vehicles accessing a road in heavy
traffic condition, but with constant inflow and outflow of 3,600
vehicles/h with speed limit of 80 km/h. After 30 minutes from
the simulation start, we added an on-ramp inflow of 20% of the
main inflow, i.e., 720 vehicles/h. Instantaneously traffic waves
emerged on the main road close to the on-ramp region. After
one hour of simulation, we reduced the main road inflow to
less than half of the beginning inflow (1,600 vehicles/h).

The specialist pointed out the place and the moment that the
first traffic wave emerged and which cars caused it (Figure 8-
a). He affirmed that the dynamics of traffic wave propagation
is similar to the circular road scenario, i.e., lane changes are
the primary cause of it. However, on-ramp accesses act as a
stationary generator of the waves in these cases. For example,
Figure 8-b depicts two waves. He also noticed the main road
inflow reduction after an hour of simulation, but he said that
in these cases the traffic jam takes too long to disappear.
In fact, after one hour of simulation, the traffic jam did not
dissolve even with a low inflow. Finally, he named the on-
ramp effects of traffic frictions and affirmed that one of the
biggest challenges for urban planners is estimating the impacts
of those effects.

C. Lane Closure

The lane closure is a scenario that reproduces the effects
of unusual events occurring on a lane, like road works and
accidents or bad street conditions [7]. In this open system,
urban planners can simulate the propagation of traffic waves
caused by these events.

For this simulation, one of the two lanes of a road is
blocked. In the first hour, traffic normally flowed with an
inflow of 1,500 vehicles/h and a speed limit of 60 km/h.



Fig. 9. (a) Lane closure scenario. The inner lane is closed without any block
sign on the map. (b) Uphill gradient scenario. The heavy vehicles had their
speed reduced significantly impairing the traffic flow in the uphill section.

Then, we increased the speed limit to 80 km/h. After that,
the simulation lasted for another hour.

Even without any lane block sign on the map, the specialist
noticed the problem naturally, due to the vehicles’ behaviors
(Figure 9-a). He said that the trails and colors helped to char-
acterize those behaviors. Although he perceived the increase of
the cars’ speed, he did not associate it with speed limit growth.
However, our change of speed limit was the main reason for
the flow destabilization, because the higher the speed is, the
greater the difficulty for a driver to change lanes becomes.
Then, many vehicles failed to change lanes.

D. Uphill Gradient

The uphill gradient scenario simulates the impacts of heavy
vehicles such as buses and trucks on the traffic flow. This
scenario differs fundamentally from previous ones by flow-
conserving bottlenecks [37].

We use a two-lane road with a relatively steep uphill
gradient to simulate a very light traffic with an inflow of
1,900 vehicles/h, a speed limit of 80 km/h and 30% of
heavy vehicles. In this simulation there were no anomalies,
i.e., the traffic flowed normally throughout the simulation.
Nevertheless, in the uphill section, the heavy vehicles had their
speed reduced significantly impairing the speed of the other
vehicles (Figure 9-b).

The specialist did not find out the reason of speed reduction.
He supposed it could be a difficulty due to the curve or the
bad condition of the road. When we told him that 30% of the
vehicles were heavy, he suggested that we highlighted them
with a different shape.

E. Specialist Feedback

The specialist recognized the potential of our approach
to visualize traffic oscillation patterns from trajectory data.
He considered the visualization to be pleasant and that it
facilitated the perception of traffic waves. Also, he stated that
the trail was an excellent indicator to visualize lane changes,
which are one of the leading causes of disturbances in dense
traffic. The time control of the visualization, in particular, the
rewinding functionality received very positive comments.

He saw that our proposal could help significantly in studies
that analyze the impacts of constructing new buildings on
the road network. For example, constructing a new mall in
a crowded region could cause traffic jams throughout the
neighborhood. The majority of the urban planners commonly
uses numerical simulators and statistical tools. Thus, he be-
lieved that our method could help these planners to make city
managers aware of these impacts. For on-line applications, he
considered that our method could be useful to predict traffic
jam in real time.

Regarding the limitations of our visualization, the specialist
noticed the lack of statistical graphs to depict the traffic flow
of the roads. In the visualizations of the real trajectory data,
i.e., the taxi databases, he considered that it was not possible
to visualize oscillations in these databases, only an overview
of the traffic flow because taxis are only a sample of the real
traffic. He concluded that our approach was more appropriate
to visualize data from traffic sensing devices such as RFID
tags, video cameras, and laser scanners, that collect data
from the entire traffic flow. Maybe that may change, in the
near future, when all vehicles would be tracked. Moreover,
he believed our visualization would have excellent results in
simulations.

V. OUR APPROACH’S PERFORMANCE

In this Section, we describe the implementation of our pro-
posed approach, showing that we can animate the trajectories
at interactive rates. The prototypes were implemented using
JavaScript and WebGL for graphics on the GPU. For map
interaction, we use an API based on OpenStreet Maps. The
development platform used by our work is free and Web-based.
The pictures and performance tests in this paper have been
generated on a workstation with an Intel Core i5 CPU at 3.4
GHz with 16 GB of RAM and a NVIDIA GeForce GTX 1070
with 8 GB of video memory.

In the first prototype, we simultaneously animated 160,000
graphic elements at 20fps. That prototype has been optimized
using sprites instead of geometry to minimize memory and
processing costs. The final implementation of the technique
provides many customization parameters, such as marker size,
speed limit, trail width, visual enhancement and threshold
factor q (Section III-D).

For performance testing purposes, we use a real-life GPS
dataset donated by a taxi company. This dataset was tracked by
taxis at the sampling rate of one second. The dataset consists
of a day with 3.2 million observations. The raw data came
in a 1.3 GB CSV file. The Cleaning step took about 20s,
resulting in more than 60% reduction of the number of points
in the dataset. This remarkable reduction was because the
algorithm discarded several points when the taxis were parked,
probably waiting for passengers. The Preprocessing step took
about 10s, and the dataset storage size increased 20% with
the new attributes. The Normalization step took about 3s and
generated almost seven million frames for the real time speed,
occupying 980MB of RAM. In this test, we had at most 1,900



taxis moving at the same time. So, the Visualization phase ran
without bottlenecks at 30 fps and 60 fps.

VI. CONCLUSION

In this paper, we presented a novel approach for visualizing
traffic oscillation patterns by visualizing the objects move-
ment in space over time. We proposed a method inspired
by vector field visualization to visualize the movement of
objects dynamically changing over time; an algorithm to
control and synchronize the visualization time; a systematic
stepwise methodology for exploring sensing devices data;
and a visualization tool that computes the trajectory data in
parallel on the GPU at interactive frame rates. Moreover, our
approach was designed to support both batch-processed and
streaming data applications. We also presented the benefits
and limitations of our visualization proposal based on domain
expert feedback. Finally, we presented performance tests with
very encouraging results to support our approach.

This work was the first step towards an end-to-end solu-
tion for the visual analysis of mobility dynamics from raw
trajectory data. As future work, we plan to integrate our
visualization technique into a complete visual analytics tool
including support for spatiotemporal queries and statistical
graphs. Next, we will test the integrated system in a field study
with data from traffic sensing devices, like video cameras.
We will also investigate dynamic visualizations for hot motion
paths [13] in an on-line application to predict traffic jam in
real time. These studies will help us to devise other means to
improve the perception of object movement dynamics.
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